ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多光譜圖像的土壤有機(jī)質(zhì)含量檢測(cè)系統(tǒng)與APP研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

浙江省科技計(jì)劃項(xiàng)目(2021C02023)


Detection System and APP Development of Soil Organic Matter Content Based on Multispectral Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    受到土壤種類(lèi),、水分等客觀因素的干擾,基于圖像預(yù)測(cè)土壤有機(jī)質(zhì)(Soil organic matter,,SOM)含量與傳統(tǒng)方法在檢測(cè)精度上仍存在差距,,限制了相關(guān)技術(shù)的推廣和普及。為提升基于圖像預(yù)測(cè)SOM含量的精度,,本研究提出N-DenseNet網(wǎng)絡(luò)模型,,在DenseNet169基礎(chǔ)上加入多尺度池化模塊,通過(guò)獲取更多的維度特征提升模型的性能,,并結(jié)合Android端開(kāi)發(fā)SOM實(shí)時(shí)檢測(cè)應(yīng)用程序(APP),,通過(guò)內(nèi)網(wǎng)透射實(shí)現(xiàn)PC端與手機(jī)端數(shù)據(jù)的及時(shí)傳輸。以黑龍江省友誼縣,、北京市昌平區(qū),、山東省泰安市3地的350份土樣為基礎(chǔ),通過(guò)手機(jī)以及多光譜無(wú)人機(jī)獲取原位土壤的高清圖像,,R波段,、紅邊波段與近紅外波段圖像,以豐富數(shù)據(jù)信息,,并通過(guò)室內(nèi)脅迫的方式拍攝土壤樣品在不同水分梯度下的圖像緩解水分對(duì)圖像造成的影響,。對(duì)比不同深度學(xué)習(xí)模型,基于多光譜圖像數(shù)據(jù)訓(xùn)練的N-DenseNet表現(xiàn)最好,,整體表現(xiàn)優(yōu)于DenseNet169,,測(cè)試集R2為0.833,RMSE為3.943g/kg,,R2相比于可見(jiàn)光數(shù)據(jù)提升0.016,,證明了訓(xùn)練過(guò)程加入R波段與紅邊和近紅外波段圖像后有助于提升模型的性能,證明了該方法的可行性,。手機(jī)端APP與后臺(tái)端數(shù)據(jù)相連實(shí)現(xiàn)數(shù)據(jù)實(shí)時(shí)傳輸,,實(shí)現(xiàn)了田間土樣SOM含量的實(shí)時(shí)預(yù)測(cè),經(jīng)田間試驗(yàn)驗(yàn)證,,模型預(yù)測(cè)集R2為0.805,,檢測(cè)時(shí)間為2.8s,滿(mǎn)足了田間SOM含量檢測(cè)的需求,,為SOM含量實(shí)時(shí)檢測(cè)提供了新的思路,。

    Abstract:

    Predicting soil organic matter (SOM) content based on images has the advantages of convenience and low cost. Interfered by objective factors such as soil type and moisture, there is still a gap between the detection accuracy of image prediction SOM content and traditional methods, which limits the promotion and popularization of related technologies. In order to improve the accuracy of image prediction of SOM content, a N_DenseNet multi-scale pooling module was added to DenseNet169 to improve the performance of the model by obtaining more dimensional features, and combined the development of SOM real-time detection APP on the Android side to realize the timely transmission of server and mobile phone data through intranet projection. Based on 350 soil samples from Youyi County, Heilongjiang Province, Changping District, Beijing City and Tai’an City, Shandong Province, high-definition images, R-band, red-edged band and near-infrared band images of in situ soil were obtained through mobile phones and multispectral drones to enrich data information, and image samples of soil samples under different moisture gradients were taken through indoor stress to alleviate the impact of moisture on the image. Compared with different deep learning models, the N_DenseNet trained based on multispectral image data performed the best, the overall performance was better than that of DenseNet169, the test set R2 was 0.833, RMSE was 3.943g/kg, and R2 was improved by 0.011 compared with the visible light data, which proved that the addition of R-band and red-edged and near-infrared images to the training process helped to improve the performance of the model, which proved the feasibility of the method. The mobile phone APP was connected to the background data to realize real-time data transmission, and realized the real-time detection of SOM content of soil samples in the field, and the model predicted R2 as 0.805 and the detection time was 2.8s after field verification, which met the needs of SOM content detection in the field and provided an idea for real-time detection of SOM content.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊瑋,于滈,李浩,曹永研,郝子源.基于多光譜圖像的土壤有機(jī)質(zhì)含量檢測(cè)系統(tǒng)與APP研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(9):270-278. YANG Wei, YU Hao, LI Hao, CAO Yongyan, HAO Ziyuan. Detection System and APP Development of Soil Organic Matter Content Based on Multispectral Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):270-278.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-02
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼