ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

GEDI與Tandem-X DEM估測密林林下地形性能評價
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

遼寧省博士科研啟動基金項目(2023-BS-202),、國家重點研發(fā)計劃項目 (2021YFE0117700)和興遼人才計劃項目(XLYC1802027)


Evaluation of Underforest Terrain Performance Estimation Using GEDI and Tandem-X DEM Data in Dense Forests
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對密林情況下,,GEDI數(shù)據(jù)與現(xiàn)有的Tandem-X DEM數(shù)字地面模型估測林下地形精度沒有進行整體評價問題,,擬以密林情況作為主要分析場景,,通過提取GEDI L2A數(shù)據(jù)產(chǎn)品對應(yīng)光斑的經(jīng)緯度,、林下地形信息與數(shù)據(jù)質(zhì)量篩選參數(shù),開展數(shù)據(jù)質(zhì)量篩選,,用以估測基于GEDI數(shù)據(jù)的林下地形數(shù)據(jù),,與Tandem-X DEM數(shù)據(jù)估測密林情況下研究區(qū)林下地形開展比較,,并進一步探究冠層高度、森林覆蓋度與植被類型對估測精度的影響,。GEDI與Tandem-X DEM的R2分別為0.99和0.98,,GEDI估測林下地形結(jié)果的RMSE、Average與STD分別6.49,、-1.92,、4.42m,Tandem-X DEM估測林下地形結(jié)果的RMSE,、Average與STD分別為18.15,、14.63、7.35m,。GEDI數(shù)據(jù)在混交林和稀疏草原情況下RMSE與Average分別變化8.05m和6.04m,,Tandem-X DEM數(shù)據(jù)在常綠針葉林與農(nóng)田/天然植被情況下,RMSE與Average變化幅度為21.63,、26.43m,。實驗結(jié)果表明, GEDI與Tandem-X DEM數(shù)據(jù)與機載驗證數(shù)據(jù)存在強相關(guān)性,,且GEDI相對Tandem-X DEM數(shù)據(jù)表現(xiàn)出更優(yōu)的評價標準,;地表植被類型相對冠層高度和植被覆蓋度會對兩數(shù)據(jù)估測林下地形精度產(chǎn)生更大的影響。

    Abstract:

    In the case of dense forests, the accuracy of estimating underforest terrain using GEDI data and existing Tandem-X DEM digital terrain models has not been comprehensively evaluated. Aiming to focus on the dense forest situation as the main research object and using airborne data as real validation data. By extracting the longitude and latitude of the corresponding LiDAR spot, underforest terrain information, and data quality screening parameters of the GEDI L2A data product, to estimate underforest terrain data based on GEDI data. Compared with Tandem-X DEM data to estimate the underforest terrain under dense forest conditions, and further explore the effects of canopy height, forest coverage, and vegetation type on estimation accuracy. The R2 values of GEDI and Tandem-X DEM were 0.99 and 0.98, respectively. The RMSE, Average, and STD values of GEDI for estimating underforest terrain were 6.49m, -1.92m, and 4.42m, respectively. The RMSE, Average, and STD values of Tandem-X DEM for estimating underforest terrain were 18.15m, 14.63m, and 7.35m, respectively. In GEDI data, RMSE and Average were changed by 8.05m and 6.04m respectively in the case of mixed forest and sparse grassland, and in Tandem-X DEM data, RMSE and Average were changed by 21.63m and 26.43m respectively in the case of evergreen coniferous forest and farmland/natural vegetation. The experimental results indicated that there was a strong correlation between GEDI and Tandem-X DEM data and airborne validation data, and GEDI performed better evaluation criteria than Tandem-X DEM data. The surface vegetation types performed greater impact on the estimation of underforest terrain than canopy height and vegetation coverage.

    參考文獻
    相似文獻
    引證文獻
引用本文

黃佳鵬,夏婷婷,宇洋. GEDI與Tandem-X DEM估測密林林下地形性能評價[J].農(nóng)業(yè)機械學報,2023,54(9):279-287. HUANG Jiapeng, XIA Tingting, YU Yang. Evaluation of Underforest Terrain Performance Estimation Using GEDI and Tandem-X DEM Data in Dense Forests[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):279-287.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼