ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多頭自注意力機(jī)制的茶葉采摘點語義分割算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2021YFD1601102)


Semantic Segmentation Algorithm Based Multi-headed Self-attention for Tea Picking Points
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    茶葉采摘點定位是茶葉選擇性采摘的關(guān)鍵技術(shù)之一,,在茶樹采摘場景中,存在采摘點尺度小,、背景干擾大,、光照情況復(fù)雜等問題,導(dǎo)致準(zhǔn)確分割茶葉采摘點成為難題,。本研究針對茶園場景下采摘點精確分割問題,,構(gòu)建了一種基于多頭自注意力機(jī)制結(jié)合多尺度特征融合的語義分割算法——RMHSA-NeXt。首先使用ConvNeXt卷積神經(jīng)網(wǎng)絡(luò)提取圖像特征,;其次構(gòu)造基于殘差和多頭自注意力機(jī)制的注意力模塊,,將模型注意力集中于分割目標(biāo),增強重要特征的表達(dá),;再次通過多尺度結(jié)構(gòu)(Atrous spatial pyramid pooling, ASPP)將不同尺度的特征進(jìn)行融合,,在其中針對采摘點特性,在融合過程中使用條狀池化(Strip pooling),,減少無用特征的獲?。蛔詈笸ㄟ^卷積以及上采樣等操作完成信息的解碼,,得出分割結(jié)果,。試驗表明,茶園環(huán)境下該模型可以對采摘點進(jìn)行有效分割,,模型的像素準(zhǔn)確率達(dá)75.20%,,平均區(qū)域重合度為70.78%,運行速度達(dá)到8.97f/s,?;谙嗤瑴y試集將本文模型與HRNet V2,、EfficientUNet++、DeeplabV3+,、BiSeNet V2模型進(jìn)行對比,,結(jié)果表明相比于其他模型同時具有準(zhǔn)確性高、推理速度快,、參數(shù)量小等優(yōu)點,,能夠較好地平衡精度與速度指標(biāo)。本文的研究成果可以為精準(zhǔn)定位茶葉采摘點提供有效可靠的參考,。

    Abstract:

    Tea picking point localization is one of the key technologies for selective tea picking. In the tea tree picking scenario, there are problems such as small scale of picking points, large background interference and complex lighting conditions, which lead to the problem of accurate segmentation of tea picking points. A semantic segmentation model based on multi-headed self-attentive mechanism combined with multi-scale feature fusion, RMHSA-NeXt, was constructed for the accurate segmentation of picking points in tea garden scenes. The attention module based on residuals and multi-headed self-attention mechanism was constructed to focus the model’s attention on the segmentation target and enhance the representation of important features. The features at different scales were fused by multi-scale structure (atrous spatial pyramid pooling, ASPP), in which strip pooling was used in the fusion process for the characteristics of picking points to reduce the useless. Finally, the information was decoded by convolution and upsampling, and the segmentation results were obtained. The experiment results showed that the model can segment the picking points effectively in the tea garden environment, and the pixel accuracy of the model reached 75.20%, the average region overlap was 70.78%, and the running speed reached 8.97f/s. The results showed that the model had the advantages of high accuracy, fast inference speed and small number of parameters, which can balance the accuracy and speed indexes well compared with other models. The research results can provide an effective and reliable reference for pinpointing tea picking points.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

宋彥,楊帥,鄭子秋,寧井銘.基于多頭自注意力機(jī)制的茶葉采摘點語義分割算法[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(9):297-305. SONG Yan, YANG Shuai, ZHENG Ziqiu, NING Jingming. Semantic Segmentation Algorithm Based Multi-headed Self-attention for Tea Picking Points[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):297-305.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-02-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼