ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SEEC-YOLO v5s的散養(yǎng)蛋雞日常行為識(shí)別與統(tǒng)計(jì)系統(tǒng)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32172779),、財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-40)和河北省科技研發(fā)平臺(tái)建設(shè)專項(xiàng)(225676150H)


Daily Behavior Recognition and Real-time Statistics System of Free-range Laying Hens Based on SEEC-YOLO v5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)雞只個(gè)體較小,、個(gè)體間存在遮擋,,對(duì)蛋雞日常行為識(shí)別造成干擾的問題,提出了一種基于SEEC-YOLO v5s的蛋雞日常行為識(shí)別方法,。通過在YOLO v5s模型輸出部分添加SEAM注意力模塊,、在特征融合部分引入顯式視覺中心模塊(EVCBlock),擴(kuò)大了模型的感受野,,提高了模型對(duì)小個(gè)體遮擋情況下的目標(biāo)識(shí)別能力,,提升了模型對(duì)蛋雞站立、采食,、飲水,、探索、啄羽和梳羽6種行為的識(shí)別精度,。提出了一種基于視頻幀數(shù)與視頻幀率比值計(jì)算蛋雞日常行為持續(xù)時(shí)間的統(tǒng)計(jì)方法,,并對(duì)蛋雞群體一天之中不同時(shí)間段及全天各行為變化規(guī)律進(jìn)行了分析。將改進(jìn)后的模型進(jìn)行封裝,、打包,,設(shè)計(jì)了蛋雞日常行為智能識(shí)別與統(tǒng)計(jì)系統(tǒng)。試驗(yàn)結(jié)果表明,,SEEC-YOLO v5s模型對(duì)6種行為識(shí)別的平均精度均值為84.65%,,比 YOLO v5s模型高2.34個(gè)百分點(diǎn),對(duì)比Faster R-CNN,、YOLO X-s,、YOLO v4-tiny和YOLO v7-tiny模型,平均精度均值分別提高4.30,、3.06,、7.11、2.99個(gè)百分點(diǎn),。本文方法對(duì)蛋雞的日常行為監(jiān)測(cè)及健康狀況分析提供了有效的支持,,為智慧養(yǎng)殖提供了借鑒。

    Abstract:

    The small size of the chickens and the shading of the chickens from each other are factors that make it difficult to identify the daily behaviour of laying hens. To address this problem, a method of daily behavior identification of laying hens based on SEEC-YOLO v5s was proposed. By adding a SEAM attention module (separated and enhancement attention module) to the output part of the YOLO v5s model and introducing an EVCBlock module (explicit visual center) to the feature fusion part, the perceptual field of the model was expanded, the recognition ability of the model for occluded targets was improved, and the recognition accuracy of the model for the six behaviors of standing, feeding, drinking, exploring, feather pecking and grooming of laying hens was improved. A statistical method was proposed to calculate the duration of daily behavior of laying hens based on the ratio of video frames to video frame rate, and various behavioral changes of laying hens at different times of the day and throughout the day were analyzed. The improved model was encapsulated and packaged to develop an intelligent identification and automatic statistics system for the daily behavior of laying hens. The test results showed that the mAP of SEEC-YOLO v5s model for six behaviors recognition was 84.65%, which was 2.34 percentage points higher than that of YOLO v5s model, and compared with that of Faster R-CNN, YOLO X-s, YOLO v4-tiny and YOLO v7-tiny models, the mAP was improved by 4.30 percentage points, 3.06 percentage points, 7.11 percentage points and 2.99 percentage points, respectively. The method can provide effective support for daily behavior monitoring and health condition analysis of laying hens, and provide a reference for smart farming.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊斷利,王永勝,陳輝,孫二東,王連增,寧煒.基于SEEC-YOLO v5s的散養(yǎng)蛋雞日常行為識(shí)別與統(tǒng)計(jì)系統(tǒng)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(9):316-328. YANG Duanli, WANG Yongsheng, CHEN Hui, SUN Erdong, WANG Lianzeng, NING Wei. Daily Behavior Recognition and Real-time Statistics System of Free-range Laying Hens Based on SEEC-YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):316-328.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼