ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于分?jǐn)?shù)階微分和最優(yōu)光譜指數(shù)的大豆葉面積指數(shù)估算
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(52179045)


Estimation of Leaf Area Index of Soybean Based on Fractional Order Differentiation and Optimal Spectral Index
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    高光譜遙感技術(shù)可對作物生長狀況進(jìn)行無損、高效地監(jiān)測,,是推動現(xiàn)代精準(zhǔn)農(nóng)業(yè)發(fā)展的必要手段,。以不同施氮水平與覆膜處理下的開花期大豆葉面積指數(shù)(Leaf area index,LAI)為研究對象,,對原始開花期大豆高光譜反射率數(shù)據(jù)進(jìn)行0~2階微分變換處理(步長0.5),,并篩選出各階光譜指數(shù)中與開花期大豆LAI相關(guān)性最高的指數(shù)作為最優(yōu)光譜指數(shù)進(jìn)行輸入,采用支持向量機(jī)(Support vector machine, SVM),、隨機(jī)森林(Random forest,,RF),、遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)(BP neural network optimized by genetic algorithm, GA-BP)3種機(jī)器學(xué)習(xí)方法構(gòu)建大豆LAI預(yù)測模型。結(jié)果表明:0~2階光譜指數(shù)與大豆LAI相關(guān)系數(shù)平均值分別為0.616,、0.657,、0.666、0.669,、0.658,,相比于原始與整數(shù)階高光譜反射率,分?jǐn)?shù)階微分變換處理后的高光譜反射率構(gòu)建的光譜指數(shù)與開花期大豆LAI具有更強(qiáng)的相關(guān)性,;相關(guān)系數(shù)平均值最高的15階微分處理最優(yōu)光譜指數(shù)波長組合分別為:TVI(687nm,754nm),、DI(687nm,754nm)、SAVI(728nm,738nm),、RI(687nm,744nm),、NDVI(620nm,653nm),其余各階最優(yōu)光譜指數(shù)組合對應(yīng)波段也集中分布于紅邊波段(680~760nm),;隨著微分階數(shù)提高,,光譜指數(shù)與大豆LAI的相關(guān)性和構(gòu)建的預(yù)測模型的精度均呈先升后降的趨勢;當(dāng)輸入變量相同時,,RF為3種機(jī)器學(xué)習(xí)模型中的最佳建模方法,。經(jīng)過綜合比較,以1.5階微分處理得到的最優(yōu)光譜指數(shù)組合作為輸入數(shù)據(jù),,基于RF構(gòu)建的大豆LAI預(yù)測模型取得了最高的精度,,驗(yàn)證集的決定系數(shù)R2為0.880,均方根誤差(RMSE)為0.3200cm2/cm2,,標(biāo)準(zhǔn)均方根誤差(NRMSE)為10.354%,,平均相對誤差(MRE)為9.572%。研究結(jié)果可為提高大豆LAI高光譜反演精度與指導(dǎo)精準(zhǔn)農(nóng)業(yè)生產(chǎn)提供理論參考,。

    Abstract:

    Hyperspectral remote sensing crop growth monitoring technology, an essential instrument for developing contemporary precision agriculture, is characterized by non-destructiveness and real-time effectiveness. Taking leaf area index (LAI) of soybean at flowering stage under different levels of N application and mulching treatment as research object, the raw data for the hyperspectral reflectance of the soybean canopy were pretreated by using the 0~2 order differential transform processing (step 0.5). Based on five sets of pretreatment reflectance data, the optimum spectral index with a high correlation to the LAI of soybean at the blooming stage was the input data. And the support vector machine (SVM), random forest (RF), and BP neural network optimized by genetic algorithm (GA-BP) were used to construct the soybean LAI prediction model.The results showed that compared with the integer order and the raw hyperspectral reflectance, the spectral indices built from the fractional order differential preprocessed hyperspectral reflectance correlated better with the soybean LAI.The corresponding bands of different orders of optimal spectral indices concentrated in the red-edge band. The correlation between the spectral index and soybean LAI was increased and then decreased as the differential order was increased, and the accuracy of the prediction model showed the same pattern.When the input data were the same for all three machine learning techniques, the model created by RF had the highest accuracy. A thorough analysis determined that the soybean LAI prediction model built by using RF had the highest accuracy of prediction when the input variable was the 1.5-order differential optimal spectral index. The R2 of the model validation set was 0.880, the RMSE was 0.3200cm2/cm2, the NRMSE was 10.354% and the MRE was 9.572%. The research result can help advance the development of precision agricultural production by offering theoretical references for enhancing the inversion accuracy of soybean LAI hyperspectral prediction models.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

向友珍,王辛,安嘉琪,唐子竣,李汪洋,史鴻棹.基于分?jǐn)?shù)階微分和最優(yōu)光譜指數(shù)的大豆葉面積指數(shù)估算[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(9):329-342. XIANG Youzhen, WANG Xin, AN Jiaqi, TANG Zijun, LI Wangyang, SHI Hongzhao. Estimation of Leaf Area Index of Soybean Based on Fractional Order Differentiation and Optimal Spectral Index[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):329-342.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-11-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼