ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于敏感變量篩選的多光譜植被含水率反演模型研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(52379042)和甘肅省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20YF8ND141)


Multispectral Vegetation Water Content Inversion Model Based on Sensitive Variable Filtering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    植被含水率是農(nóng)田生態(tài)系統(tǒng)敏感性的重要表征,為提高近地遙感植被含水率反演效率和精度,,基于無(wú)人機(jī)多光譜影像數(shù)據(jù),,提取苜蓿、玉米2種植被覆蓋的光譜反射率,,在此基礎(chǔ)上引入紅邊波段計(jì)算改進(jìn)光譜指數(shù),。將5種光譜反射率及25個(gè)光譜指數(shù)利用變量投影重要性(Variable importance in projection, VIP)分析,、灰色關(guān)聯(lián)度(Gray relational analysis, GRA)分析與皮爾遜(Person)相關(guān)性分析進(jìn)行篩選,并建立基于反向神經(jīng)網(wǎng)絡(luò)(Back-propagation neural network, BPNN),、偏最小二乘法(Partial least squares regression, PLSR),、支持向量回歸(Support vector regression, SVR)和隨機(jī)森林(Random forest, RF)4種機(jī)器學(xué)習(xí)模型,以確定不同作物覆蓋下的最佳植被含水率反演模型,。結(jié)果表明,,3種篩選算法中VIP和GRA的模型精度明顯優(yōu)于Person相關(guān)性分析,且反演結(jié)果波動(dòng)較小;在4種機(jī)器學(xué)習(xí)算法中,,SVR算法在非線性問(wèn)題中相較于BPNN,、PLSR、RF算法具有較強(qiáng)的解析能力和模型魯棒性,,驗(yàn)證集決定系數(shù)R2達(dá)到0.77以上,,其結(jié)果能較真實(shí)反映植被含水率;兩種樣地基于GRA的植被含水率反演模型精度最高,苜蓿覆蓋地GRA-SVR驗(yàn)證集R2達(dá)0.889,,RMSE為0.798%,,MAE為0.533%;玉米覆蓋地反演結(jié)果驗(yàn)證集R2為0.848,RMSE為0.668%,,MAE為0.542%,。研究結(jié)果可為植被含水率的快速、精準(zhǔn)反演提供理論依據(jù),。

    Abstract:

    Vegetation moisture content is an important characterization of the sensitivity of farmland ecosystem. The spectral reflectance of two vegetation covers, alfalfa and corn were extracted, based on the UAV multispectral image data, and on the basis of which the red-edge band was introduced to calculate the improved spectral indices in order to increase the efficiency and accuracy of the inversion of vegetation water content by near-earth remote sensing. A back-propagation neural network (BPNN) was created after the five spectral bands and 25 indices were filtered by using the variable importance in projection (VIP), gray relational analysis (GRA), and Pearson’s correlation analysis. To find the optimum inversion model for vegetation water content under various crop covers, back-propagation neural network, partial least squares regression (PLSR), support vector regression (SVR), and random forest (RF) were used. The findings indicated that, among the three screening algorithms, the accuracy of the models following GRA and VIP was significantly higher than that of Pearson’s correlation analysis, and the inversion results were less volatile. Among the four machine learning algorithms, the SVR algorithm had a stronger nonlinear problem resolution ability and model robustness than BPNN, PLSR, and RF algorithms. In the nonlinear problem, the SVR algorithm outperformed the BPNN, PLSR, and RF algorithms in terms of analytical ability and model robustness. The validation set coefficient of determination R2 reached above 0.77 and its results can offer more accurate feedback on vegetation water content. The GRA-SVR based inversion model for vegetation water content had the highest accuracy in the two sample sites. The GRA-SVR validation set R2 of alfalfa cover reached 0.889, RMSE of 0.798%, and MAE of 0.533%;the inversion result validation set R2 of corn cover was 0.848, RMSE of 0.668%, and MAE of 0.542%. The research results can provide a theoretical basis for rapid and accurate inversion of vegetation water content.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙文舉,段威成,王銀鳳,周春,馬宏.基于敏感變量篩選的多光譜植被含水率反演模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(9):343-351,,385. ZHAO Wenju, DUAN Weicheng, WANG Yinfeng, ZHOU Chun, MA Hong. Multispectral Vegetation Water Content Inversion Model Based on Sensitive Variable Filtering[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):343-351,385.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼