ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于熒光光譜結(jié)合寬度學(xué)習(xí)的白菜農(nóng)藥殘留量檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

北京市自然科學(xué)基金項(xiàng)目(4222043),、國(guó)家自然科學(xué)基金項(xiàng)目(61807001)和北京工商大學(xué)2023研究生科研能力提升計(jì)劃項(xiàng)目


Detection of Pesticide Residues in Cabbage Based on Fluorescence Spectroscopy Combined with Broad Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了高效監(jiān)控蔬菜中農(nóng)藥殘留情況,利用熒光光譜技術(shù)檢測(cè)白菜中吡蟲啉農(nóng)藥殘留量,。首先通過(guò)三維熒光光譜確定400nm為吡蟲啉的最佳激發(fā)波長(zhǎng),;其次通過(guò)分析6種預(yù)處理算法和2種降維算法,分別選出多元散射校正(Multiple scattering calibration, MSC)和無(wú)信息變量消除(Uninformative variable elimination, UVE)作為最佳的預(yù)處理與波長(zhǎng)選擇方法,;寬度學(xué)習(xí)系統(tǒng)(Broad learning system, BLS)用于熒光光譜建模,,同時(shí)與偏最小二乘回歸(Partial least squares regression, PLSR)、支持向量機(jī)(Support vector machine, SVM)和深度極限學(xué)習(xí)機(jī)(Deep extreme learning machines, DELM)等經(jīng)典模型進(jìn)行比較,。結(jié)果顯示BLS模型獲得了最佳吡蟲啉含量預(yù)測(cè)效果,,測(cè)試集決定系數(shù)R2p達(dá)0.949,均方根誤差(Root mean square error, RMSE)達(dá)0.347mg/kg,。表明了熒光光譜技術(shù)結(jié)合寬度學(xué)習(xí)預(yù)測(cè)農(nóng)藥殘留量的可行性,,可以為在線檢測(cè)農(nóng)藥殘留量系統(tǒng)的開發(fā)提供理論依據(jù)。

    Abstract:

    In order to efficiently monitor the pesticide residues in vegetables, a detection method of pesticide residue content of imidacloprid in cabbage on fluorescence spectroscopy was proposed. Firstly, 400nm was determined of as the optimal excitation wavelength of imidacloprid by three-dimensional fluorescence spectroscopy. Afterwards, six pre-processing algorithms and two dimensionality reduction algorithms were analyzed. Multiple scattering calibration (MSC) and uninformative variable elimination (UVE) were selected as the best pre-processing and wavelength selection methods, respectively. Finally, the broad learning system (BLS) was used for fluorescence spectroscopy modeling and compared with classical models such as partial least squares regression (PLSR), support vector machine (SVM), and deep extreme learning machines (DELM). The results showed that the BLS model obtained the best prediction of imidacloprid content. The test set coefficient of determination (R2p) reached 0.949 and the root mean square error (RMSE) reached 0.347mg/kg. The research result showed that fluorescence spectroscopy combined with BLS was feasible to identify pesticide residue content, and it can provide a theoretical basis for the development of online detection system for pesticide residue content.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉翠玲,李佳琮,孫曉榮,殷鶯倩,張善哲,吳靜珠.基于熒光光譜結(jié)合寬度學(xué)習(xí)的白菜農(nóng)藥殘留量檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(10):198-204. LIU Cuiling, LI Jiacong, SUN Xiaorong, YIN Yingqian, ZHANG Shanzhe, WU Jingzhu. Detection of Pesticide Residues in Cabbage Based on Fluorescence Spectroscopy Combined with Broad Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):198-204.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-04-30
  • 出版日期:
文章二維碼