ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

果園機(jī)器人LiDAR/IMU緊耦合實(shí)時(shí)定位與建圖方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32171908)


Real-time Localization and Mapping Method for Agricultural Robot in Orchards Based on LiDAR/IMU Tight-coupling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對果園環(huán)境中GNSS定位信號易丟失和傳統(tǒng)SLAM算法魯棒性較差的問題,,本文提出一種基于LiDAR/IMU緊耦合框架的全局無偏狀態(tài)估計(jì)果園機(jī)器人定位與建圖方法,。LiDAR/IMU緊耦合框架基于因子圖進(jìn)行多源約束的IMU里程計(jì)構(gòu)建,實(shí)時(shí)輸出高頻位姿信息,,IMU里程計(jì)因子和預(yù)積分因子優(yōu)化LiDAR里程計(jì)并提供位姿先驗(yàn)約束IMU零偏,。引入局部點(diǎn)云地圖參與特征點(diǎn)云粗匹配和非特征點(diǎn)云遞進(jìn)式匹配進(jìn)一步稠密化源點(diǎn)云,改善LiDAR里程計(jì)的性能,。融合GPS信號與LiDAR/IMU緊耦合框架的地圖構(gòu)建,,能夠得到準(zhǔn)確且高頻連續(xù)的位姿信息,提高點(diǎn)云地圖的復(fù)用率,。在果園和苗木等場景驗(yàn)證了該算法的性能,,實(shí)驗(yàn)結(jié)果表明,與LIO-SAM等算法相比,,定位精度維持在0.05m左右,,均方根誤差為0.0162m。本文算法使機(jī)器人具有更高的精度,、實(shí)時(shí)性和魯棒性,,有效降低了系統(tǒng)累積誤差,保證了所構(gòu)建地圖的全局一致性,。

    Abstract:

    Aiming at the problems of easy loss of GNSS positioning signals and poor robustness of traditional SLAM algorithms in forest and orchard environments, the problems of easy loss of GNSS positioning signals and poor robustness of traditional SLAM algorithms in forest and orchard environments was addressed. The proposed method was based on the factor graph for multi-source constrained IMU odometry construction, real-time output of high-frequency position information. The IMU odometry factors and pre-integration factors were used to optimize LiDAR odometry and provide a priori constraints on IMU bias. The LiDAR odometry was optimized by the odometry factor and pre-integration factor, which provided a priori constraints on the IMU bias of the position. The local point cloud map was introduced to participate in feature point cloud coarse matching and non-feature point cloud progressive matching to further densify the source point cloud and improve the performance of the LiDAR odometer. The map construction by fusing GPS signals with LiDAR/IMU tightly coupled framework can obtain accurate and high-frequency continuous position information and improve the reuse rate of point cloud maps. The experimental results showed that the positioning accuracy was maintained at around 0.05m and the root mean square error was 0.0162m compared with algorithms such as LIO-SAM. The algorithm presented enabled the robot to achieve higher accuracy, real-time performance and robustness, effectively reducing the cumulative error of the system and ensuring the global consistency of the constructed maps.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

沈躍,肖鑫樺,劉慧,張璇.果園機(jī)器人LiDAR/IMU緊耦合實(shí)時(shí)定位與建圖方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):20-28,,48. SHEN Yue, XIAO Xinhua, LIU Hui, ZHANG Xuan. Real-time Localization and Mapping Method for Agricultural Robot in Orchards Based on LiDAR/IMU Tight-coupling[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):20-28,48.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼