ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進U-Net的火龍果采摘圖像分割和姿態(tài)估計方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

廣東省農(nóng)業(yè)科技創(chuàng)新“揭榜掛帥”項目(2022SDZG03-5)和嶺南現(xiàn)代農(nóng)業(yè)實驗室科研項目(NZ2021038)


Image Segmentation and Pose Estimation Method for Pitaya Picking Robot Based on Enhanced U-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)火龍果采收自動化作業(yè),提出一種基于改進U-Net的火龍果圖像分割和姿態(tài)估計方法,。首先,,在U-Net 模型的跳躍連接(編碼器與解碼器部分特征圖進行的連接操作)中引入通道和空間注意力機制模塊(Concurrent spatial and channel squeeze and channel excitation, SCSE),,同時將SCSE模塊集成到殘差模塊(Double residual block, DRB)中,在增強網(wǎng)絡提取有效特征能力的同時提高網(wǎng)絡的收斂速度,,得到一種基于注意力殘差U-Net的火龍果圖像分割網(wǎng)絡,。通過該網(wǎng)絡分割出果實及其附生枝條的掩膜圖像,利用圖像處理技術(shù)和相機成像模型擬合出果實及其附生枝條的輪廓,、果實質(zhì)心,、果實最小外接矩形框和三維邊界框,進而結(jié)合果實及其附生枝條的位置關(guān)系進行火龍果三維姿態(tài)估計,,并在火龍果種植園中獲得一個測試集,,以評價該算法的性能,最后在自然果園環(huán)境下進行實地采摘試驗,。試驗結(jié)果表明,,火龍果果實圖像分割平均交并比(mIoU)和平均像素準確率(mPA)分別達到86.69%和93.89%,三維姿態(tài)估計平均誤差為8.8°,,火龍果采摘機器人在果園環(huán)境下的采摘成功率為86.7%,,平均采摘時間為22.3s。

    Abstract:

    In order to achieve automation of pitaya harvesting, an improved U-Net based method for pitaya image segmentation and pose estimation was proposed. Firstly, a concurrent spatial and channel squeeze and channel exception (SCSE) module was introduced into the skip connection (connection operation between the encoder and decoder feature maps) of the U-Net model. At the same time, the SCSE module was integrated into the residual module double residual block (DRB) to enhance the network’s ability to extract effective features while improving its convergence speed, obtaining a pitaya image segmentation network based on attention residual U-Net. By using this network to segment mask images of fruits and their accompanying branches, image processing techniques and camera imaging models were used to fit the contours, centroids, minimum bounding rectangle boxes, and three-dimensional bounding boxes of fruits and their accompanying branches. Then based on the positional relationship of fruits and their accompanying branches, three-dimensional pose estimation of pitaya was performed. A test set was obtained in pitaya plantations to evaluate the performance of this algorithm. Finally, field picking experiments were conducted in a natural orchard environment. The experimental results showed that the average intersection and union ratio (mIoU) and the mean pixel accuracy (mPA) of image segmentation for pitaya fruit reached 86.69% and 93.89%, respectively. The average error of threedimensional pose estimation was 8.8°. The success rate of pitaya fruit picking robot in orchard environment was 86.7%, and the average picking time was 22.3s. The research results indicated that this method can provide technical support for developing an intelligent pitaya picking robot to achieve automated and precise picking.

    參考文獻
    相似文獻
    引證文獻
引用本文

朱立學,賴穎杰,張世昂,伍榮達,鄧文乾,郭曉耿.基于改進U-Net的火龍果采摘圖像分割和姿態(tài)估計方法[J].農(nóng)業(yè)機械學報,2023,54(11):180-188. ZHU Lixue, LAI Yingjie, ZHANG Shiang, WU Rongda, DENG Wenqian, GUO Xiaogeng. Image Segmentation and Pose Estimation Method for Pitaya Picking Robot Based on Enhanced U-Net[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):180-188.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼