ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

棉花軋工質(zhì)量機(jī)器視覺檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2002404)、兵團(tuán)科技攻關(guān)計(jì)劃項(xiàng)目(2022DB003)和兵團(tuán)財(cái)政科技計(jì)劃項(xiàng)目(2023AB014)


Design and Test of Machine Vision Inspection System for Cotton Preparation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)棉花軋工質(zhì)量現(xiàn)行人工感官檢驗(yàn)中存在的勞動(dòng)強(qiáng)度大,、主觀性強(qiáng),、檢測(cè)效率低等問題,設(shè)計(jì)一種基于機(jī)器視覺的棉花軋工質(zhì)量檢測(cè)系統(tǒng),。系統(tǒng)由壓棉機(jī)構(gòu),、圖像采集機(jī)構(gòu)、檢測(cè)處理機(jī),、檢測(cè)控制板卡和觸控顯示屏組成,。設(shè)計(jì)了低角度直接照明系統(tǒng)與圖像采集機(jī)構(gòu),LED光源以檢測(cè)視窗法線呈45°方向照射,,工業(yè)相機(jī)透過光學(xué)玻璃采集棉花圖像,。采用圖像紋理特征表達(dá)棉花外觀形態(tài),通過測(cè)定軋工質(zhì)量實(shí)物標(biāo)準(zhǔn)的角二階矩,建立圖像紋理特征與外觀形態(tài)關(guān)系模型,,融合噪聲點(diǎn)評(píng)價(jià)與高低閾值自適應(yīng)的Canny方法進(jìn)行圖像濾波與分割識(shí)別,,根據(jù)歐氏距離進(jìn)行軋工質(zhì)量等級(jí)判定,并選取棉樣進(jìn)行系統(tǒng)試驗(yàn)驗(yàn)證,。結(jié)果表明,,軋工質(zhì)量實(shí)物標(biāo)準(zhǔn)P1、P2,、P3的角二階矩分別為[0.8932,,1]、[0.6891,,0.7761],、[0.2136,0.5873],,各等級(jí)間的角二階矩紋理特征值區(qū)別明顯,,驗(yàn)證了圖像紋理表達(dá)棉花外觀形態(tài)的可行性。系統(tǒng)的疵點(diǎn)粒數(shù)指標(biāo)檢測(cè)相對(duì)偏差為0.15,,疵點(diǎn)與背景的分離效果明顯,。與國(guó)標(biāo)檢驗(yàn)方法相比,軋工質(zhì)量視覺系統(tǒng)檢測(cè)準(zhǔn)確率達(dá)94.20%,,檢測(cè)偏差上下浮動(dòng)不大于1個(gè)軋工質(zhì)量等級(jí),,與國(guó)標(biāo)檢驗(yàn)結(jié)果一致性高。單個(gè)棉樣系統(tǒng)檢測(cè)耗時(shí)1.2s,,檢測(cè)效率提升77.36%,。系統(tǒng)能夠滿足現(xiàn)場(chǎng)使用要求,為棉花軋工質(zhì)量指標(biāo)的儀器化檢測(cè)提供了技術(shù)參考。

    Abstract:

    Aiming at the problems of labor intensity, strong subjectivity and low detection efficiency in the current manual sensory inspection of cotton preparation, a machine vision-based cotton preparation inspection system was designed. The system consisted of cotton pressing mechanism, image acquisition mechanism, detection processor, detection control board and touch screen. Firstly, a low-angle direct lighting system and an image acquisition mechanism were designed, where the LED light source was illuminated at an angle of 45° to the normal of the inspection window, and the industrial camera collected cotton images through the optical glass. Then the system adopted image texture features to express the appearance morphology of cotton, and established a relationship model between image texture features and appearance morphology by measuring the angular second moment of cotton preparation sample standards. In the adaptive filtering and Canny algorithm, it integrated the noise point evaluation and the high and low threshold adaptive methods for image filtering and segmentation identification, and the ginning quality level determination was made according to the Euclidean distance. Finally, cotton samples were selected for system performance test verification. The results showed that the angluar second moment of the ginning quality physical standards P1, P2 and P3 were [0.8932, 1], [0.6891, 0.7761], [0.2136, 0.5873], respectively, and the difference in the texture eigenvalues of the angular second moment between the grades was obvious, which verified the feasibility of the image texture to express the appearance and morphology of cotton. The relative deviation of the inspection of the number of defects index of the system was 0.15, and the separation effect of defects and background was obvious. Compared with the national standard inspection method, the detection accuracy of the preparation visual system reached 94.20%, and the detection deviation was not more than 1 preparation grade, which was in high consistency with the national standard inspection results. The detection time of single cotton sample system was 1.2s, and the detection efficiency was improved by 77.36%. The system can meet the requirements of field use, and provide a technical reference for the instrumental detection of cotton preparation indexes.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

夏彬,史書偉,張若宇,秦建鋒,劉妍妍,常金強(qiáng).棉花軋工質(zhì)量機(jī)器視覺檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):189-197. XIA Bin, SHI Shuwei, ZHANG Ruoyu, QIN Jianfeng, LIU Yanyan, CHANG Jinqiang. Design and Test of Machine Vision Inspection System for Cotton Preparation[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):189-197.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼