ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于圖像自動(dòng)標(biāo)注與改進(jìn)YOLO v5的番茄病害識(shí)別系統(tǒng)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(62176261)


Tomato Disease Recognition System Based on Image Automatic Labeling and Improved YOLO v5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)作物病害識(shí)別系統(tǒng)功能單一,,缺乏系統(tǒng)升級(jí)機(jī)制,,人工升級(jí)系統(tǒng)成本較大的問(wèn)題,以番茄病害為例,,提出了基于OpenCV的番茄葉片圖像自動(dòng)標(biāo)注算法和改進(jìn)YOLO v5的番茄病害識(shí)別模型,;結(jié)合數(shù)據(jù)集自動(dòng)劃分、模型自動(dòng)訓(xùn)練與評(píng)估,、手機(jī)APP自動(dòng)創(chuàng)建與更新理念,,設(shè)計(jì)了一種可以自動(dòng)升級(jí)的番茄病害識(shí)別系統(tǒng);引入專家審查校正機(jī)制,,提高了系統(tǒng)識(shí)別結(jié)果的可靠性,。實(shí)驗(yàn)結(jié)果表明,該系統(tǒng)實(shí)現(xiàn)了對(duì)番茄的健康葉片與9類病害葉片進(jìn)行識(shí)別,,可以在實(shí)際應(yīng)用中通過(guò)手機(jī)APP識(shí)別番茄病害的同時(shí)自動(dòng)擴(kuò)充番茄病害圖像數(shù)據(jù)集,,并根據(jù)數(shù)據(jù)擴(kuò)充量自動(dòng)啟動(dòng)系統(tǒng)的升級(jí)優(yōu)化流程,由此不斷提升該系統(tǒng)的番茄病害識(shí)別性能,。該系統(tǒng)為番茄生產(chǎn)提供了一個(gè)便捷,、可靠的番茄病害識(shí)別工具。

    Abstract:

    Intelligent recognition of crop diseases is a hot topic in the intersection of artificial intelligence and agriculture. At present, the crop disease identification system has a single function and lacks a system upgrade mechanism, and the cost of manual upgrade system is large. To solve the above problems, tomato disease was taken as an example, automatic tomato leaf image labeling algorithm was proposed based on OpenCV and an improved YOLO v5 tomato disease recognition model was constructed. Combining the ideas of automatic data set division, automatic model training and evaluation, and automatic creation and update of mobile phone APP were combined, and a tomato disease recognition system that can be automatically upgraded was designed. The expert review and correction mechanism was introduced to improve the reliability of the system identification results. The experimental results showed that the system realized the identification of the healthy leaves of tomato and the nine kinds of disease leaves, it can automatically expand the tomato disease image data set while identifying tomato diseases through the mobile phone APP in practical application, and automatically start the upgrade and optimization process of the system according to the number of data expansion, so as to continuously improve the tomato disease recognition performance of the system. The design of the system can provide a convenient and reliable tool for tomato disease identification in tomato production.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張領(lǐng)先,景嘉平,李淑菲,朱昕怡,喬琛.基于圖像自動(dòng)標(biāo)注與改進(jìn)YOLO v5的番茄病害識(shí)別系統(tǒng)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):198-207. ZHANG Lingxian, JING Jiaping, LI Shufei, ZHU Xinyi, QIAO Chen. Tomato Disease Recognition System Based on Image Automatic Labeling and Improved YOLO v5[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):198-207.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼