ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v7-tiny的甜椒畸形果識(shí)別算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

嶺南現(xiàn)代農(nóng)業(yè)科學(xué)與技術(shù)廣東省實(shí)驗(yàn)室科研項(xiàng)目(NT2021009),、國(guó)家自然科學(xué)基金面上項(xiàng)目(32372002),、廣東省農(nóng)業(yè)科學(xué)院科技人才引進(jìn)專項(xiàng)資金項(xiàng)目(R2019YJ-YB3003)、廣東省農(nóng)業(yè)科學(xué)院協(xié)同創(chuàng)新中心項(xiàng)目(XT202201)和廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2023B0202090001)


Malformed Sweet Pepper Fruit Identification Algorithm Based on Improved YOLO v7-tiny
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    甜椒在生長(zhǎng)發(fā)育過(guò)程中容易產(chǎn)生畸形果,,機(jī)器代替人工對(duì)甜椒畸形果識(shí)別和摘除一方面可提高甜椒品質(zhì)和產(chǎn)量,,另一方面可解決當(dāng)前人工成本過(guò)高、效率低下等問(wèn)題,。為實(shí)現(xiàn)機(jī)器人對(duì)甜椒果實(shí)的識(shí)別,,提出了一種基于改進(jìn)YOLO v7-tiny目標(biāo)檢測(cè)模型,用于區(qū)分正常生長(zhǎng)和畸形生長(zhǎng)的甜椒果實(shí),。將無(wú)參數(shù)注意力機(jī)制(Parameterfree attention module, SimAM)融合到骨干特征提取網(wǎng)絡(luò)中,,增強(qiáng)模型的特征提取和特征整合能力;用Focal-EIOU(Focal and efficient intersection over union)損失替換原損失函數(shù)CIOU(Complete intersection over union),,加快模型收斂并降低損失值,;使用SiLU激活函數(shù)代替原網(wǎng)絡(luò)中的Leaky ReLU,增強(qiáng)模型的非線性特征提取能力,。試驗(yàn)結(jié)果表明,,改進(jìn)后的模型整體識(shí)別精確度、召回率,、平均精度均值(Mean average precision, mAP)mAP0.5,、mAP0.5-0.95分別為99.1%、97.8%,、98.9%,、94.5%,與改進(jìn)前相比,,分別提升5.4,、4.7、2.4、10.7個(gè)百分點(diǎn),,模型內(nèi)存占用量為 10.6MB,,單幅圖像檢測(cè)時(shí)間為4.2ms。與YOLO v7,、Scaled-YOLO v4、YOLOR-CSP等目標(biāo)檢測(cè)模型相比,,模型在F1值上與YOLO v7相同,,相比Scaled-YOLO v4、YOLOR-CSP分別提升0.7,、0.2個(gè)百分點(diǎn),,在mAP0.5-0.95上分別提升0.6、1.2,、0.2個(gè)百分點(diǎn),,而內(nèi)存占用量?jī)H為上述模型的14.2%、10.0%,、10.0%,。本文所提出的模型實(shí)現(xiàn)了小體量而高精度,便于在移動(dòng)端進(jìn)行部署,,為后續(xù)機(jī)械化采摘和品質(zhì)分級(jí)提供技術(shù)支持,。

    Abstract:

    Sweet peppers are prone to malformed fruits during the growth and development process. Machine replace manual identification and removal of deformed sweet peppers, on the one hand, it can improve the quality and yield of sweet peppers;on the other hand, it can solve the current problems of high labor costs and low efficiency. In order to realize the identification of sweet pepper fruits by robots, an improved YOLO v7-tiny target detection model was proposed to distinguish between normal and abnormal growth of sweet pepper fruits. The parameterfree attention module (SimAM) was integrated into the backbone feature extraction network to enhance the feature extraction and feature integration capabilities of the model;the original loss function CIOU was replaced with Focal-EIOU loss, Focal-EIOU can speed up model convergence and reduce loss value;the SiLU activation function was used to replace the Leaky ReLU in the original network to enhance the nonlinear feature extraction ability of the model. The test results showed that the overall recognition precision, recall rate, mAP0.5 and mAP0.5-0.95 of the improved model were 99.1%, 97.8%, 98.9% and 94.5%, compared with that before improvement, it was increased by 5.4 percentage points, 4.7 percentage points, 2.4 percentage points, and 10.7 percentage points, respectively, the model weight size was 10.6MB, and the single image detection time was 4.2ms. Compared with YOLO v7, scaled-YOLO v4, YOLOR-CSP target detection models, the model had the same F1 score as YOLO v7. Compared with scaled-YOLO v4, YOLOR-CSP was increased by 0.7 and 0.2 percentage points, respectively, mAP0.5-0.95 was increased by 0.6 percentage points, 1.2 percentage points and 0.2 percentage points, respectively, and the weight size was only 14.2%, 10.0%, 10.0% of the above model. The model proposed achieved small size and high precision, and it was easy to deploy on the mobile terminal, providing technical support for subsequent mechanized picking and quality grading.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王昱,姚興智,李斌,徐賽,易振峰,趙俊宏.基于改進(jìn)YOLO v7-tiny的甜椒畸形果識(shí)別算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):236-246. WANG Yu, YAO Xingzhi, LI Bin, XU Sai, YI Zhenfeng, ZHAO Junhong. Malformed Sweet Pepper Fruit Identification Algorithm Based on Improved YOLO v7-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):236-246.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼