ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于幀間深度特征差分的大西洋鮭魚群活躍度分類模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61973337)


Classification Model of Atlantic Salmon Activity Intensity Based on Deep Feature Differencing between Frames
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    魚群活躍度是魚類健康福利養(yǎng)殖的特征性指標(biāo)之一,實(shí)現(xiàn)魚群活躍度細(xì)粒度分類有利于更精細(xì)地描述魚群健康狀況、評(píng)估魚群福利水平,?;诠S化循環(huán)水養(yǎng)殖系統(tǒng),本文建立了水下大西洋鮭魚群活躍度細(xì)粒度分類視頻數(shù)據(jù)集,并提出一種基于幀間深度特征差分的魚群活躍度分類模型,通過引入殘差連接的小型卷積神經(jīng)網(wǎng)絡(luò)提取視頻幀的特征,進(jìn)而在相鄰幀之間做差分運(yùn)算和平方運(yùn)算得到視頻幀間特征,,最后將其輸入基于外部注意力機(jī)制的分類網(wǎng)絡(luò)IFDNet中得到視頻類別。試驗(yàn)結(jié)果表明,,本文提出的CNN-IFDNet模型分類準(zhǔn)確率達(dá)到97.72%,,F(xiàn)1值達(dá)到97.42%,以較低的計(jì)算復(fù)雜度實(shí)現(xiàn)了對(duì)水下視頻魚群活躍度的三分類,。相較于實(shí)驗(yàn)室環(huán)境,,基于真實(shí)養(yǎng)殖環(huán)境對(duì)魚群活躍度所展開的算法研究實(shí)際應(yīng)用性更強(qiáng),,可以為精細(xì)化描述魚群的活躍度、實(shí)現(xiàn)智能監(jiān)測(cè)魚類健康狀況提供參考,,幫助養(yǎng)殖人員發(fā)現(xiàn)并排除導(dǎo)致魚群活躍度異常的水質(zhì)環(huán)境,、病害等因素。

    Abstract:

    Fish activity intensity is one of the characteristic indicators of fish health and welfare farming. The fine-grained classification of fish activity intensity is beneficial to describe fish health status and assess fish welfare levels. The fine-grained classification of Atlantic salmon activity intensity where a smallscaled underwater video dataset was collected in the industrial recirculating aquaculture system was carried out. Firstly, the features of video frames were extracted through a small convolutional neural network with residual connections. Then the inter-frame features were obtained by performing differential and square operations between adjacent frames. Finally, the inter-frame features were inputted into the classification network IFDNet based on the external attention mechanism to obtain the video category. The experimental results showed that the classification accuracy of the CNN-IFDNet model proposed reached 97.72%, and the F1 score reached 97.42%. With low computational complexity, the three classification of the fish activity intensity video was realized. Compared with the laboratory environment, the algorithm research based on the real farming environment for fish activity intensity was more practical. The research result can provide a reference for elaborately describing the activity intensity of fish school and realizing intelligent monitoring of fish health status, which can help aquaculture workers discover abnormal conditions and investigate factors causing abnormal fish activity intensity, such as water quality environment and diseases.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

徐立鴻,崔鈺惠,劉世晶,韓厚偉.基于幀間深度特征差分的大西洋鮭魚群活躍度分類模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):259-265. XU Lihong, CUI Yuhui, LIU Shijing, HAN Houwei. Classification Model of Atlantic Salmon Activity Intensity Based on Deep Feature Differencing between Frames[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):259-265.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼