ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLOX的群養(yǎng)生豬輕量化目標(biāo)檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金面上項(xiàng)目(32172784)


Lightweight Target Detection Method for Group-raised Pigs Based on Improved YOLOX
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前群養(yǎng)生豬智能化養(yǎng)殖中復(fù)雜環(huán)境下豬只目標(biāo)檢測精度低的問題,提出了一種基于改進(jìn)YOLOX的群養(yǎng)生豬輕量化目標(biāo)檢測模型Ghost-YOLOX-BiFPN。該模型采用Ghost卷積替換普通卷積,,在減少主干網(wǎng)絡(luò)參數(shù)的情況下,,提高了模型的特征提取能力。使用加入CBAM注意力機(jī)制的BiFPN作為模型的Neck部分,,使得模型充分融合不同體型豬只的特征圖,,并使用Focal Loss損失函數(shù)解決豬圈環(huán)境下豬只與背景難以區(qū)分的問題,增強(qiáng)模型對正樣本的學(xué)習(xí),。實(shí)驗(yàn)結(jié)果表明,,改進(jìn)后模型對群養(yǎng)生豬檢測精度為95.80%,相比于原始YOLOX算法,,檢測精度提升2.84個百分點(diǎn),,參數(shù)量降低63%。最后將本文輕量化模型部署到Nvidia Jetson Nano移動端開發(fā)板,,通過在開發(fā)板上實(shí)際運(yùn)行表明,,本文所提模型實(shí)現(xiàn)了對不同大小、不同品種豬只的準(zhǔn)確識別,,為后續(xù)智能化生豬養(yǎng)殖提供支持,。

    Abstract:

    Aiming at the problem of low pig target detection accuracy in the complex environment in the current intelligent breeding of group-raised pigs, a lightweight target detection model for group-raised pigs based on improved YOLOX, Ghost-YOLOX-BiFPN was proposed. The Ghost convolution was used to replace the traditional convolution, which greatly reduced the number of model parameters. BiFPN was used as the model feature fusion network to effectively fuse the feature maps of pigs of different sizes, and Focal Loss function was added in the post-processing stage, increasing the learning of the model to the positive sample target, and reducing the rate of missed detection. The results showed that the improved model had a detection accuracy of 95.80% for pigs, and the number of model parameters were 2.001×107. Compared with the original YOLOX algorithm, the detection accuracy and recall were increased by 2.84 percentage points and 3.22 percentage points, respectively, and the number of model parameters were reduced by 63%. Finally, the proposed algorithm model was deployed to the Nvidia Jetson Nano mobile terminal development board. The actual operation on the development board showed that the model proposed can guarantee the recognition rate of pigs and realize the accurate recognition of pigs of different sizes and breeds. The research result can provide support for the subsequent establishment of intelligent pig breeding system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

鄧銘輝,龔俊杰,鄭飄逸,馬闖,尹艷玲.基于改進(jìn)YOLOX的群養(yǎng)生豬輕量化目標(biāo)檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):277-285. DENG Minghui, GONG Junjie, ZHENG Piaoyi, MA Chuang, YIN Yanling. Lightweight Target Detection Method for Group-raised Pigs Based on Improved YOLOX[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):277-285.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼