ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于混沌表示和特征注意力機制的機床兩軸動態(tài)誤差預測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金面上項目(52375083),、重慶市自然科學基金面上項目(cstc2021jcyj-msxmX0372),、川渝聯(lián)合實施重點研發(fā)項目(CSTB2022TIAD-CUX0017)、重慶市研究生科研創(chuàng)新項目(CYS22657)和重慶理工大學國家“兩金”培育項目(2022PYZ005)


Dynamic Error Prediction of Machine Tool Two-axis Based on Chaotic Representation and Feature Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統(tǒng)方法難以揭示機床多軸插補動態(tài)誤差的序列產生機制,,各時間維度上的誤差時序特征存在相互關聯(lián)的問題,,提出一種融合混沌表示(Chaotic representation,CR)和特征注意力機制(Feature attention mechanism,,F(xiàn)A)的級聯(lián)動態(tài)誤差預測模型,。首先,在證明多元動態(tài)誤差時變演化具有混沌特性的基礎上,,對其進行相空間重構,,將動態(tài)誤差參數(shù)時間序列背后隱藏的信息在相空間中進行表達。然后,,融合特征注意力機制在時間維度上動態(tài)分配相點特征權重的同時降低高維演化相空間信息冗余,,進一步重塑原系統(tǒng)的動力學狀態(tài)向量空間。最后,,考慮到混沌時變演化具有長程相關性,,采用雙向長短期記憶(Bi-directional long short-term memory,Bi-LSTM)網絡模型逼近混沌相空間內的動力學特性,,實現(xiàn)動態(tài)誤差混沌時間序列信息的有效預測。通過XK-L540型數(shù)控銑床實測數(shù)據(jù)的算例表明,,相較于CRFA-LSTM模型,,以及單一級聯(lián)模型CR-Bi-LSTM、FA-Bi-LSTM,,本文算法的均方根誤差分別降低約35%,、16%和43%。

    Abstract:

    To address the problem that traditional methods are difficult to reveal the sequence generation mechanism of dynamic error in machine tool multi-axis interpolation and the error time series features in each time dimension are interrelated, a cascaded dynamic error prediction model integrating chaotic representation (CR) and feature attention mechanism (FA) was proposed. Firstly, on the basis of proving that the time-varying evolution of multivariate dynamic error had chaotic characteristics, the phase space was reconstructed to represent the hidden information behind the time series of dynamic error parameters in the phase space. Then the fused feature attention mechanism further reshaped the dynamical state vector space of the original system by dynamically assigning phase point feature weights in the time dimension while reducing the redundancy of information in the high-dimensional evolution phase space. Finally, considering the long-range correlation of chaotic time-varying evolution, the bi-directional long short-term memory (Bi-LSTM) network model was used to approximate the dynamics in the chaotic phase space to achieve the effective prediction of dynamic error chaotic time series information. Compared with the Bi-LSTM model and the single cascade models CR-Bi-LSTM and FA-Bi-LSTM, the root mean square error of this algorithm was reduced by about 35%, 16% and 43%, respectively, as shown by the example of XK-L540 CNC milling machine with real data. The algorithm realized the phase space expression of dynamic error sequence generation mechanism in time dimension, and constantly played the main role of key phase point feature, with high prediction accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

杜柳青,李寶釧,余永維.基于混沌表示和特征注意力機制的機床兩軸動態(tài)誤差預測[J].農業(yè)機械學報,2023,54(11):451-458. DU Liuqing, LI Baochuan, YU Yongwei. Dynamic Error Prediction of Machine Tool Two-axis Based on Chaotic Representation and Feature Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):451-458.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼