ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多物候特征指數(shù)的冬小麥分布信息提取
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(42101382),、河南省科技攻關(guān)項目(222102110038、232102210093),、河南省博士后基金項目(202103072),、河南理工大學博士基金項目(B2021-19)和河南理工大學測繪科學與技術(shù)“雙一流”學科創(chuàng)建項目(JXSFZXKFJJ202308、JXSFZXKFJJ202305)


Extraction of Winter Wheat Distribution Information Based on Multi-phenological Feature Indices Derived from Sentinel-2 Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    以往的冬小麥分布信息提取研究大多基于單個物候期或單個植被指數(shù),,未考慮不同物候期特征及不同物候期之間的聯(lián)系導致分類精度較低,。為提高提取精度,本文基于冬小麥播種期,、越冬期,、生長期及成熟期選取相應特征指數(shù),提出一種多物候特征指數(shù)的冬小麥識別方法,,并對2020年焦作市的冬小麥面積進行提取,。通過對不同物候期、不同分類方法下的結(jié)果進行對比,,結(jié)果表明:在物候期的選擇上,,加入越冬期后,隨機森林與支持向量機分類的總體精度與Kappa系數(shù)呈現(xiàn)不同程度的提升,均方根誤差(RMSE)分別減小19.3%和9.8%,,提取冬小麥面積的誤差百分比分別降低8.64,、4.42個百分點。在不同分類方法上,,隨機森林相較于支持向量機,、最小距離,分類的總體精度與Kappa系數(shù)更高,。相較于支持向量機,,隨機森林分類的RMSE減小19.6%。相較于單一特征指數(shù),,基于隨機森林的多物候特征指數(shù)分類的總體精度,,Kappa系數(shù)更高,RMSE為1.84×103hm2,,比單一特征指數(shù)減小33.6%,,提取冬小麥面積的誤差百分比減小7.14個百分點。

    Abstract:

    Previous research on the extraction of winter wheat distribution information has mostly relied on single phenological periods or individual vegetation indices, neglecting the characteristics of different phenological periods and their interconnections, which has limited the classification accuracy. To enhance the extraction accuracy, a method for winter wheat identification was proposed based on corresponding feature indices for the sowing period, overwintering period, growth period, and maturation period. The method was applied to extract the winter wheat area in Jiaozuo City in 2020. By comparing the results under different phenological periods and classification methods, the findings indicated that the inclusion of the overwintering period led to varying degrees of improvement in overall accuracy and Kappa coefficients for both random forest and support vector machine classification methods, with respective reductions in root mean square error (RMSE) by 19.3% and 9.8%. The error percentage in winter wheat area extraction was reduced by 8.64 percentage points and 4.42 percentage points, respectively. Among different classification methods, random forest outperforms support vector machine and minimum distance in terms of overall accuracy and Kappa coefficient. Compared with support vector machine, random forest classification reduced RMSE by 19.6%. When compared with single feature indices, the overall accuracy and Kappa coefficient of the multi-phenological feature index based on random forest were higher, with RMSE of 1.84×103hm2, representing 33.6% reduction compared with single feature indices and 7.14 percentage points decrease in the error percentage for winter wheat area extraction.

    參考文獻
    相似文獻
    引證文獻
引用本文

吳喜芳,化仕浩,張莎,谷玲霄,馬春艷,李長春.基于多物候特征指數(shù)的冬小麥分布信息提取[J].農(nóng)業(yè)機械學報,2023,54(12):207-216. WU Xifang, HUA Shihao, ZHANG Sha, GU Lingxiao, MA Chunyan, LI Changchun. Extraction of Winter Wheat Distribution Information Based on Multi-phenological Feature Indices Derived from Sentinel-2 Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):207-216.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-08
  • 出版日期:
文章二維碼