ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進DeepLabv3+的番茄圖像多類別分割方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(52065033)和云南省科技廳重大專項(2022AG050002-4)


Multi-category Segmentation Method of Tomato Image Based on Improved DeepLabv3+
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    番茄圖像中多類別目標的準確識別是實現自動化采摘的技術前提,針對現有網絡分割精度低,、模型參數多的問題,,提出一種基于改進DeepLabv3+的番茄圖像多類別分割方法。該方法使用幻象網絡(GhostNet)和坐標注意力模塊(Coordinate attention,,CA)構建CA-GhostNet作為DeepLabv3+的主干特征提取網絡,,減少網絡的參數量并提高模型的分割精度,并設計了一種多分支解碼結構,,用于提高模型對小目標類別的分割能力,。在此基礎上,基于單,、雙目小樣本數據集使用合成數據集的權值參數進行遷移訓練,,對果實、主干,、側枝,、吊線等8個語義類別進行分割。結果表明,,改進的DeepLabv3+模型在單目數據集上的平均交并比(MIoU)和平均像素準確率(MPA)分別為68.64%、78.59%,,在雙目數據集上的MIoU和MPA分別達到73.00%,、80.59%。此外,,所提模型內存占用量僅為18.5MB,,單幅圖像推理時間為55ms,與基線模型相比,,在單,、雙目數據集上的MIoU分別提升6.40、6.98個百分點,,與HRNet,、UNet、PSPNet相比,內存占用量壓縮82%,、79%,、88%。該研究可為番茄采摘機器人的智能采摘和安全作業(yè)提供參考,。

    Abstract:

    Accurate identification of multi-category targets in tomato images is the technical premise for automatic picking. Aiming at the problems of low segmentation accuracy and the large number of model parameters in existing networks, a multi-category segmentation method based on improved DeepLabv3+ was proposed for tomato images. The method used GhostNet and coordinate attention (CA) to construct CA-GhostNet as the backbone feature extraction network of DeepLabv3+, reducing the number of parameters in the network. And a multi-branch decoding structure was designed to improve the segmentation accuracy of the model for small target categories. Then the weight parameters of the synthesized dataset were used for migration training based on the single and binocular small sample dataset. Eight semantic categories such as fruit, trunk, branch and thin line were segmented. The results showed that mean intersection over union (MIoU) and mean pixel accuracy (MPA) of improved DeepLabv3+ model were 68.64% and 78.59% on the monocular dataset, respectively. The MIoU and MPA were 73.00% and 80.59% on the binocular dataset. In addition, the memory occupation of the proposed model was only 18.5MB, and the inference time of a single image was 55ms. Compared with the baseline model, the MIoU on the monocular and binocular datasets was increased by 6.40 percentage points and 6.98 percentage points, respectively. Compared with HRNet, UNet and PSPNet, the memory occupation was reduced by 82%, 79% and 88%, respectively. The research result can provide reference for intelligent picking and safe operation of tomato picking robot.

    參考文獻
    相似文獻
    引證文獻
引用本文

顧文娟,魏金,陰艷超,劉孝保,丁燦.基于改進DeepLabv3+的番茄圖像多類別分割方法[J].農業(yè)機械學報,2023,54(12):261-271. GU Wenjuan, WEI Jin, YIN Yanchao, LIU Xiaobao, DING Can. Multi-category Segmentation Method of Tomato Image Based on Improved DeepLabv3+[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):261-271.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-04-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-30
  • 出版日期:
文章二維碼