ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于融合對(duì)抗訓(xùn)練的農(nóng)作物品種信息抽取方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

河南省科技創(chuàng)新杰出人才項(xiàng)目


Crop Variety Information Extraction Method Based on Integrated Adversarial Training
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)我國作物品種種類多,,資源信息規(guī)范性差,,模型訓(xùn)練精度低等問題,本文以小麥,、水稻,、玉米、大豆,、棉花,、花生、油菜7種作物為對(duì)象,,以品種,、形態(tài)、產(chǎn)量和品質(zhì)等參數(shù)為指標(biāo),,構(gòu)建了83個(gè)品種實(shí)體,,采用人工標(biāo)注方法,通過融合對(duì)抗訓(xùn)練技術(shù),,提出了農(nóng)作物品種信息抽取4層網(wǎng)絡(luò)模型(BERT-PGD-BiLSTM-CRF),。模型基于深層雙向Transformer構(gòu)建的BERT(Bidirectional encoder representation from transformers)模型作為預(yù)訓(xùn)練模型獲取字詞語義表示,使用PGD(Projected gradient descent)對(duì)抗訓(xùn)練方法為樣本增加擾動(dòng),,提高模型魯棒性和泛化性,,利用雙向長短期記憶網(wǎng)絡(luò) (Bidirectional long short-term memory, BiLSTM)學(xué)習(xí)長距離文本信息,結(jié)合條件隨機(jī)場(Conditional random field,CRF)學(xué)習(xí)標(biāo)簽約束信息,。對(duì)比18個(gè)不同信息抽取模型的訓(xùn)練效果,,結(jié)果表明,本研究提出的BERT-PGD-BiLSTM-CRF模型精確率為95.4%,、召回率為97.0%,、F1值為96.2%,說明利用對(duì)抗訓(xùn)練技術(shù)的BERT-PGD-BiLSTM-CRF模型能夠有效對(duì)作物品種信息進(jìn)行抽取,,同時(shí)也為農(nóng)業(yè)信息抽取提供了技術(shù)參考,。

    Abstract:

    In response to the issues of a wide variety of crop types, poor resource information standardization, and low model training accuracy in China, focusing on seven crops: wheat, rice, maize, soybeans, cotton, peanuts, and rapeseed, using parameters like variety, morphology, yield, and quality as indicators, totally 83 crop variety entities were constructed. A manual annotation approach was adopted and an information extraction four-layer network model (BERT-PGD-BiLSTM-CRF) was introduced by incorporating adversarial training techniques. The model utilized the bidirectional encoder representation from transformers(BERT) model, based on a deep bidirectional transformer, as a pre-training model to acquire semantic representations of words and phrases. It employed projected gradient descent (PGD) adversarial training to introduce perturbations to the samples, thereby enhancing model robustness and generalization. Additionally, it leveraged a bidirectional long short-term memory (BiLSTM) network to capture long-distance text information and combined conditional random fields (CRF) to learn label constraint information. Comparing the training results with 18 different information extraction models, the research indicated that the proposed BERT-PGD-BiLSTM-CRF model achieved a precision of 95.4%, a recall of 97.0%, and an F1 score of 96.2%. This suggested that the BERT-PGD-BiLSTM-CRF model, utilizing adversarial training techniques, was effective in extracting crop variety information and also provided a technological reference for agricultural information extraction.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

許鑫,馬文政,張浩,馬新明,喬紅波.基于融合對(duì)抗訓(xùn)練的農(nóng)作物品種信息抽取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(12):272-279,337. XU Xin, MA Wenzheng, ZHANG Hao, MA Xinming, QIAO Hongbo. Crop Variety Information Extraction Method Based on Integrated Adversarial Training[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):272-279,,337.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-26
  • 出版日期:
文章二維碼