ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于特征工程的大田作物行中心線識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32101622)和中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2023TC083)


Center Line Detection of Field Crop Rows Based on Feature Engineering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)大田作物行特征復(fù)雜多樣,,傳統(tǒng)作物行識(shí)別方法魯棒性不足,、參數(shù)調(diào)節(jié)困難等問題,該研究提出一種基于特征工程的大田作物行識(shí)別方法,。以苗期棉花作物行冠層為識(shí)別對(duì)象,,分析作物行冠層特點(diǎn),以RGB圖像和深度圖像為數(shù)據(jù)來源,,建立作物行冠層特征表達(dá)模型,。運(yùn)用特征降維方法提取作物行冠層的關(guān)鍵特征參數(shù),降低運(yùn)算量,?;谥С窒蛄繖C(jī)技術(shù)建立作物行冠層特征分割模型,提取作物行特征點(diǎn),。結(jié)合隨機(jī)抽樣一致算法和主成分分析技術(shù)建立作物行中心線檢測(cè)方法,。以包含不同光照、雜草,、相機(jī)位姿的棉花作物行圖像為測(cè)試數(shù)據(jù),,運(yùn)用線性核、徑向基核和多項(xiàng)式核的支持向量機(jī)分類器開展作物行冠層分割試驗(yàn),;對(duì)比分析典型Hough變換,、最小二乘法和所建作物行中心線檢測(cè)方法的性能。結(jié)果表明,,徑向基核分類器的分割精度和魯棒性最優(yōu),;所建作物行中心線檢測(cè)方法的精度和速度最優(yōu),航向角偏差平均值為0.80°,、標(biāo)準(zhǔn)差為0.73°,;橫向位置偏差平均值為0.90像素,,標(biāo)準(zhǔn)差為0.76像素;中心線擬合時(shí)間平均值為55.74ms/f,,標(biāo)準(zhǔn)差為4.31ms/f,。研究成果可提高作物行識(shí)別模型的適應(yīng)性,,減少參數(shù)調(diào)節(jié)工作量,,為導(dǎo)航系統(tǒng)提供準(zhǔn)確的導(dǎo)航參數(shù)。

    Abstract:

    Aiming at the complexity and diversity of the characteristics of field crop rows, the lack of robustness of the traditional crop row detection method, and the difficulty of parameter adjustment, a field crop row detection method based on feature engineering was proposed. Taking the seedling cotton crop row canopy as the recognition object, the crop row canopy characteristics were analyzed, and the feature expression model of the canopy of cotton crop was established with RGB image and depth image as the data source. The key feature parameters of crop row canopy were extracted by using feature dimensionality reduction method to reduce the amount of computation. A crop canopy feature segmentation model was established based on support vector machine technology to extract crop feature points. The method of crop row centerline detection was established by combining random sample consensus algorithm and principal component analysis. Using cotton crop row images with different illumination, weed and camera positions as test data, SVM classifiers with linear, RBF, and polynomial kernels were employed to conduct crop row canopy segmentation experiments. The performance of typical Hough transform, linear square method and the established crop row centerline detection method was compared and analyzed. The results showed that the RBF classifier had the best segmentation accuracy and robustness. The accuracy and speed of the established crop row centerline detection method were the best. The mean value of heading angle deviation was 0.80° and the standard deviation was 0.73°;the mean value of lateral position deviation was 0.90 pixels and the standard deviation was 0.76 pixels;the mean value of centerline fitting time was 55.74ms/f and the standard deviation was 4.31ms/f. The research results can improve the adaptability of crop row detection model, reduce the workload of parameter adjustment, and provide accurate navigation parameters for navigation system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張碩,劉禹,熊坤,翟志強(qiáng),朱忠祥,杜岳峰.基于特征工程的大田作物行中心線識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s1):18-26. ZHANG Shuo, LIU Yu, XIONG Kun, ZHAI Zhiqiang, ZHU Zhongxiang, DU Yuefeng. Center Line Detection of Field Crop Rows Based on Feature Engineering[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):18-26.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼