ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于MobileViT模型的小麥?zhǔn)斋@機(jī)喂入密度分類(lèi)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32201687)和國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2001203)


Classification Method for Wheat Harvester Feeding Density Based on MobileViT Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于喂入量的作業(yè)速度智能化控制技術(shù)是優(yōu)化聯(lián)合收獲機(jī)作業(yè)效率和質(zhì)量的重要手段,。本文針對(duì)傳統(tǒng)喂入量自動(dòng)控制技術(shù)時(shí)滯明顯,在喂入量調(diào)整時(shí)無(wú)法及時(shí)適應(yīng)實(shí)際情況的問(wèn)題,,采用基于圖像的深度學(xué)習(xí)方法開(kāi)展了成熟期小麥植株密度等級(jí)分類(lèi)識(shí)別方法研究,,通過(guò)預(yù)先感知作物密度,實(shí)現(xiàn)聯(lián)合收獲機(jī)作業(yè)參數(shù)的自動(dòng)調(diào)整,。首先基于車(chē)載相機(jī)和無(wú)人機(jī)圖像構(gòu)建了小麥植株圖像數(shù)據(jù)集,,并細(xì)分為低密度、中密度,、高密度和特高密度4類(lèi),;其次構(gòu)建了基于MobileViT-XS輕量化網(wǎng)絡(luò)的密度等級(jí)識(shí)別模型,利用建立的數(shù)據(jù)集進(jìn)行模型的訓(xùn)練和測(cè)試,;最后將其與VGG16,、GoogLeNet和ResNet進(jìn)行了比較。結(jié)果表明,,MobileViT-XS模型的總體識(shí)別準(zhǔn)確率達(dá)到91.03%,,且單幅圖像推理時(shí)間僅為29.5ms。與VGG16,、ResNet網(wǎng)絡(luò)相比,,總體識(shí)別準(zhǔn)確率分別高出3.51、2.34個(gè)百分點(diǎn),,MobileViT-XS模型可以較好的完成小麥不同密度等級(jí)的分類(lèi)識(shí)別任務(wù),,為實(shí)時(shí)預(yù)測(cè)小麥喂入密度提供了技術(shù)支持。

    Abstract:

    Intelligent control technology of operating speed based on feeding rate is an important means to optimize the efficiency and quality of combine harvester operations. Aiming at the obvious time delay of the traditional feeding rate automatic control technology and the inability to adapt to the actual situation in time when the feeding rate is adjusted. By analyzing the influencing factors of the feeding rate, an imagebased deep learning method was used to carry out a research on the classification and recognition method of wheat plant density in the mature stage. By sensing crop density in advance, the operating parameters of the combine harvester can be automatically adjusted. Firstly, a multi-variety and multi-region mature stage wheat plant image dataset was constructed based on vehicle-mounted cameras and UAV images, and classified it into four categories: low density, medium density, high density, and very high density. Next, a density classification recognition model was built based on the lightweight MobileViT-XS network, and trained and tested the model by using the established dataset. Finally, it was compared with VGG16, GoogLeNet, and ResNet. The results showed that the overall recognition accuracy of the MobileViT-XS model reached 91.03%, and the inference time for a single image was 29.5ms. Compared with VGG16 and ResNet networks, the overall recognition accuracy was 3.51 percentage points and 2.34 percentage points higher respectively. The MobileViT-XS model can effectively accomplish the classification recognition of wheat at different density levels, providing technical support for real-time prediction of wheat feeding rate.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊志凱,扶蘭蘭,唐燦,王發(fā)明,倪昕東,陳度.基于MobileViT模型的小麥?zhǔn)斋@機(jī)喂入密度分類(lèi)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s1):172-180. YANG Zhikai, FU Lanlan, TANG Can, WANG Faming, NI Xindong, CHEN Du. Classification Method for Wheat Harvester Feeding Density Based on MobileViT Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):172-180.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-31
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼