ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于MS-YOLO v7的多尺度稻飛虱識(shí)別分類(lèi)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系水稻農(nóng)業(yè)機(jī)械崗位專(zhuān)家項(xiàng)目(SDAIT-17-08)


Multi-scale Rice Planthopper Image Recognition and Classification Based on Lightweight MS-YOLO v7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    智能蟲(chóng)情測(cè)報(bào)燈下害蟲(chóng)的精準(zhǔn)識(shí)別和分類(lèi)是實(shí)現(xiàn)稻田蟲(chóng)情預(yù)警的前提,,為解決水稻害蟲(chóng)圖像識(shí)別過(guò)程中存在分布密集,、體態(tài)微小、易受背景干擾等造成識(shí)別精度不高的問(wèn)題,提出了一種基于MS-YOLO v7(Multi-Scale-YOLO v7)輕量化稻飛虱識(shí)別分類(lèi)方法,。首先,,采用稻飛虱害蟲(chóng)誘捕裝置搭建稻飛虱害蟲(chóng)采集平臺(tái),獲取的稻飛虱圖像構(gòu)成ImageNet數(shù)據(jù)集,。然后,,MS-YOLO v7目標(biāo)檢測(cè)算法采用GhostConv輕量卷積作為主干網(wǎng)絡(luò),減小模型運(yùn)行的參數(shù)量,;在Neck部分加入CBAM注意力機(jī)制模塊,,有效強(qiáng)調(diào)稻飛虱區(qū)別度較高的特征通道,抑制沉冗無(wú)用特征,,準(zhǔn)確提取稻飛虱圖像中的關(guān)鍵特征,,動(dòng)態(tài)調(diào)整特征圖中不同通道的權(quán)重;將SPPCSPS空間金字塔池化模塊替換SPPFS金字塔池化模塊,,提高網(wǎng)絡(luò)模型對(duì)各分類(lèi)樣本的特征提取能力,;同時(shí)將YOLO v7模型中的SiLU激活函數(shù)替換為Mish激活函數(shù),增強(qiáng)網(wǎng)絡(luò)的非線(xiàn)性表達(dá)能力,。試驗(yàn)結(jié)果表明,,改進(jìn)后的MS-YOLO v7在測(cè)試集上的模型平均精度均值(Mean average precision,mAP)為95.7%,,精確率(Precision)為96.4%,,召回率(Recall)為94.2%,與Faster R-CNN,、SSD,、YOLO v5、YOLO v7網(wǎng)絡(luò)模型相比mAP分別提高2.1,、3.4,、2.3,、1.6個(gè)百分點(diǎn),,F(xiàn)1值分別提高2.7、4.1,、2.5,、1.4個(gè)百分點(diǎn)。改進(jìn)后的模型內(nèi)存占用量,、參數(shù)量,、浮點(diǎn)運(yùn)算數(shù)分別為63.7MB、2.85×107,、7.84×1010,,相比YOLO v7模型分別縮減12.5%、21.7%,、25.4%,,MS-YOLO v7網(wǎng)絡(luò)模型對(duì)稻飛虱種間害蟲(chóng)均能實(shí)現(xiàn)高精度的識(shí)別與分類(lèi),,具有較好的魯棒性,可為稻田早期稻飛虱蟲(chóng)情預(yù)警提供技術(shù)支持,。

    Abstract:

    Accurate identification and classification of pests under intelligent insect monitoring and reporting lights are the prerequisite for realizing early warning of rice insect situation. In order to solve the problems in image recognition of rice pests, such as dense distribution, small body size and susceptibility to background interference, the recognition accuracy is not high.A lightweight MS-YOLO v7 (Multi-Scale-YOLO v7) based classification method for rice fly identification was proposed.Firstly, a rice planthopper pest collection platform was built with a migratory pest trapping device, and the images of rice planthopper were obtained to form the ImageNet dataset. Then the MS-YOLO v7 object detection algorithm used GhostConv lightweight convolution as the backbone network to reduce the number of parameters for model operation. CBAM attention mechanism module was added to Neck to effectively emphasize the highly differentiated feature channels of rice planthopper, suppress redundant and useless features, accurately extract key features of rice planthopper images, and dynamically adjust the weights of different channels in the feature map. SPPCSPS spatial pyramid module was replaced by SPPFS pyramid module to improve the feature extraction ability of the network model. At the same time, SiLU activation function was replaced by Mish activation function in YOLO v7 model to enhance the nonlinear ability of the network. The test results showed that the mean average precision (mAP), precision (96.4%) and recall (94.2%) of the improved MS-YOLO v7 on the test set were 95.7%, 96.4% and 94.2%, respectively.Compared with that of Faster R-CNN, SSD, YOLO v5 and YOLO v7 network models, mAP was improved by 2.1 percentage points, 3.4 percentage points, 2.3 percentage points and 1.6 percentage points, respectively, and the balance score F1 was improved by 2.7 percentage points, 4.1 percentage points, 2.5 percentage points and 1.4 percentage points, respectively.The memory occupation, number of parameters, and number of floating-point operations of the improved model were 63.7 MB, 2.85×107, and 7.84×1010, respectively, which were scaled down by 12.5%, 21.7%, and 25.4% compared with that of the YOLO v7 model. The MS-YOLO v7 network model can realize high-precision identification and classification of interspecific pests of rice fly, with good robustness, and it can be used to realize the technical support for early warning of rice fly pest in paddy fields.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉雙喜,劉思濤,屈慧星,王劉西航,胡憲亮,許增海.基于MS-YOLO v7的多尺度稻飛虱識(shí)別分類(lèi)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s1):212-221. LIU Shuangxi, LIU Sitao, QU Huixing, WANG Liuxihang, HU Xianliang, XU Zenghai. Multi-scale Rice Planthopper Image Recognition and Classification Based on Lightweight MS-YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):212-221.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-20
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼