ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO v5s的作物黃化曲葉病檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2022YFD1900801)


Improved YOLO v5s-based Detection Method for Crop Yellow Leaf Curl Virus Disease
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    作物病害的初期快速準確識別是減小作物經(jīng)濟損失的重要保障。針對實際生產(chǎn)環(huán)境中,,作物葉片黃化曲葉病毒病(Yellow leaf curl virus,,YLCV)患病初期無法應(yīng)用傳統(tǒng)圖像處理算法通過顏色或紋理特征進行準確和快速識別,并且YOLO v5s通用模型在復雜環(huán)境下識別效果差和效率低的問題,,本文提出一種集成改進的葉片病害檢測識別方法,。該方法通過對Plant Village公開數(shù)據(jù)集中單一患病葉片圖像以及實際生產(chǎn)中手機拍攝獲取的患病作物冠層圖像兩種來源制作數(shù)據(jù)集,并對圖像中的患病葉片進行手動標注等操作,,以實現(xiàn)在復雜地物背景和葉片遮擋等情況下正確識別目標,,即在健康葉片、患病葉片,、枯萎葉片,、雜草和土壤中準確識別出所有的患病葉片。此外,,用智能手機在生產(chǎn)現(xiàn)場拍攝圖像,,會存在手機分辨率、光線,、拍攝角度等多種因素,,會導致識別正確率降低等問題,需要對采集到的圖像進行預處理和數(shù)據(jù)增強以提高模型識別率,通過對YOLO v5s原始模型骨干網(wǎng)絡(luò)重復多次增加CA注意力機制模塊(Coordinate attention),,增強YOLO算法對關(guān)鍵信息的提取能力,,利用加權(quán)雙向特征金字塔網(wǎng)絡(luò)(Bidirectional feature pyramid network,BiFPN),,增強模型不同特征層的融合能力,,從而提高模型的泛化能力,替換損失函數(shù)EIoU(Efficient IoU loss),,進一步優(yōu)化算法模型,,實現(xiàn)多方法疊加優(yōu)化后系統(tǒng)對目標識別性能的綜合提升。在相同試驗條件下,,對比YOLO v5原模型,、YOLO v8、Faster R-CNN,、SSD等模型,,本方法的精確率P、召回率R,、平均識別準確率mAP0.5,、mAP0.5:0.95分別達到97.40%、94.20%,、97.20%,、79.10%,本文所提出的算法在提高了精確率與平均精度的同時,,保持了較高的運算速度,,滿足對作物黃化曲葉病毒病檢測的準確性與時效性的要求,并為移動端智能識別作物葉片病害提供了理論基礎(chǔ),。

    Abstract:

    Rapid and accurate identification of crop diseases in the early stage is an important guarantee to reduce crop economic losses. In view of the actual production environment, crop yellow leaf curl virus (YLCV) cannot be accurately and quickly identified by color or texture features by traditional image processing algorithms in the early stage of disease, and the YOLO v5s general model has poor recognition effect and low efficiency in complex environments. The dataset was made from two sources: the images of single diseased leaves in the public dataset of Plant Village and the canopy images of diseased crop taken by mobile phones in the actual production, and manually labeled the diseased leaves in the images to achieve the correct identification of targets in complex terrain background and leaf occlusion, that was, to accurately identify all diseased leaves in healthy leaves, diseased leaves, withered leaves, weeds and soil. In addition, a smartphone was used to shoot images at the production site, there would be a variety of factors such as mobile phone resolution, light, shooting angle, etc., which would lead to problems such as reduced recognition accuracy, and it was necessary to preprocess data and enhance the collected images to improve the model recognition rate, and enhance the extraction ability of YOLO algorithm to key information by repeatedly increasing the CA attention mechanism module (coordinate attention) for many times on the YOLO v5s original model backbone network. The weighted bidirectional feature pyramid network (BiFPN) was used to enhance the fusion ability of different feature layers of the model, thereby improving the generalization ability of the model, replacing the loss function EIoU (Efficient IoU loss), further optimizing the algorithm model, and realizing the comprehensive improvement of the target recognition performance of the system after multi-method superposition optimization. Under the same experimental conditions, compared with the original YOLO v5, YOLO v8, Faster R-CNN, SSD and other models, the precision rate P, recall rate R, average recognition accuracy mAP0.5, mAP0.5:0.95 reached 97.40%, 94.20%, 97.20% and 79.10%, respectively, and the proposed algorithm maintained a high operation speed while improving the accuracy and average accuracy. It met the requirements of accuracy and timeliness of the detection of crop yellowing leaf curvature virus disease, and provided a theoretical basis for the intelligent identification of crop leaf diseases on mobile terminals.

    參考文獻
    相似文獻
    引證文獻
引用本文

左昊軒,黃祺成,楊佳昊,孫泉,李思恩,李莉.基于改進YOLO v5s的作物黃化曲葉病檢測方法[J].農(nóng)業(yè)機械學報,2023,54(s1):230-238. ZUO Haoxuan, HUANG Qicheng, YANG Jiahao, SUN Quan, LI Sien, LI Li. Improved YOLO v5s-based Detection Method for Crop Yellow Leaf Curl Virus Disease[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):230-238.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼