ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CBAM-YOLO v7的自然環(huán)境下棉葉病蟲(chóng)害識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61640413、32101621)和兵團(tuán)財(cái)政科技計(jì)劃項(xiàng)目(2021BB023-02,、2022CB001-05)


Identification Method of Cotton Leaf Pests and Diseases in Natural Environment Based on CBAM-YOLO v7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)自然環(huán)境下棉花葉片病害檢測(cè)難度大和人工設(shè)計(jì)特征提取器難以獲取與棉葉病蟲(chóng)害相近特征表達(dá)的問(wèn)題,,提出一種改進(jìn)的注意力機(jī)制YOLO v7算法(CBAM-YOLO v7)。該模型在YOLO v7模型基礎(chǔ)上,,在Backbone與Head中間增加注意力機(jī)制CBAM,,并在Head部進(jìn)行4倍下采樣,然后將CBAM-YOLO v7模型用于棉葉病蟲(chóng)害識(shí)別,,并與YOLO v5和YOLO v7進(jìn)行對(duì)比試驗(yàn),。試驗(yàn)結(jié)果表明:蚜蟲(chóng)和正常葉片檢測(cè)方面,YOLO v7可取得好的檢測(cè)結(jié)果,;CBAM-YOLO v7對(duì)黃萎病,、棉盲蝽、紅蜘蛛棉葉病蟲(chóng)害圖像檢測(cè)的準(zhǔn)確率高于其他模型,。CBAM-YOLO v7的mAP為85.5%,,相較于YOLO v5提高21個(gè)百分點(diǎn),,相較于YOLO v7提高4.9個(gè)百分點(diǎn),;單幅圖檢測(cè)耗時(shí)為29.26ms,可為棉葉病害在線監(jiān)測(cè)提供理論基礎(chǔ),。

    Abstract:

    To address the challenges of detecting cotton leaf diseases in natural environments and the difficulty of manually designing feature extractors that capture similar feature expressions as those of cotton leaf diseases, an improved attention mechanism YOLO v7 algorithm (CBAM-YOLO v7) was proposed. Building upon the YOLO v7 model, the approach integrated the convolutional block attention module (CBAM) into the backbone and head of the model and incorporated a four times downsampling step within the head. The CBAM-YOLO v7 model was employed for the identification of cotton leaf diseases in Southern Xinjiang, and comparative experiments were conducted against YOLO v5 and YOLO v7. Experimental results revealed that in terms of aphid and normal leaf detection, YOLO v7 achieved favorable detection outcomes. Notably, CBAM-YOLO v7 demonstrated higher accuracy in detecting diseases like Fusarium wilt, cotton mirid bugs, and red spider mites when compared with other models. CBAM-YOLO v7 achieved a mean average precision (mAP) of 85.5%, representing a 21 percentage points increase over YOLO v5 and a 4.9 percentage points increase over YOLO v7. Moreover, the detection time for a single image was 29.26ms, offering a theoretical foundation for online monitoring of cotton leaf diseases.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張楠楠,張曉,白鐵成,尚鵬,王文瀚,李莉.基于CBAM-YOLO v7的自然環(huán)境下棉葉病蟲(chóng)害識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s1):239-244. ZHANG Nannan, ZHANG Xiao, BAI Tiecheng, SHANG Peng, WANG Wenhan, LI Li. Identification Method of Cotton Leaf Pests and Diseases in Natural Environment Based on CBAM-YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):239-244.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼