ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于VGG-ST模型的奶牛糞便形態(tài)分類(lèi)方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD1301103),、河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目 (22322909D)、北京市農(nóng)林科學(xué)院改革與發(fā)展項(xiàng)目和北京市農(nóng)林科學(xué)院智能裝備技術(shù)研究中心開(kāi)放項(xiàng)目(KFZN2020W011)


Cow Manure Classification Method Based on VGG-ST Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    快速準(zhǔn)確識(shí)別奶牛糞便形態(tài),,對(duì)于奶牛腸胃健康監(jiān)測(cè)與精細(xì)管理具有重要意義,。針對(duì)目前奶牛糞便識(shí)別人工依賴強(qiáng)、識(shí)別難度大等問(wèn)題,,提出了一種基于VGG-ST(VGG-Swin Transformer)模型的奶牛稀便,、軟便、硬便及正常糞便圖像識(shí)別與分類(lèi)方法,。首先,,以泌乳期荷斯坦奶牛糞便為研究對(duì)象,采集上述4種不同形態(tài)的糞便圖像共879幅,,利用翻轉(zhuǎn),、旋轉(zhuǎn)等圖像增強(qiáng)操作擴(kuò)充至5580幅作為本研究數(shù)據(jù)集;然后,,分別選取Swin Transformer,、AlexNet、ResNet-34,、ShuffleNet和MobileNet 5種典型深度學(xué)習(xí)圖像分類(lèi)模型進(jìn)行奶牛糞便形態(tài)分類(lèi)研究,,通過(guò)對(duì)比分析,,確定Swin Transformer為最優(yōu)基礎(chǔ)分類(lèi)模型;最后,,融合VGG模型與Swin Transformer模型,,構(gòu)建了VGG-ST模型,其中,,VGG模型獲取奶牛糞便局部特征,,同時(shí)Swin Transformer模型提取全局自注意力特征,特征融合后實(shí)〖JP3〗現(xiàn)奶牛糞便圖像分類(lèi),。實(shí)驗(yàn)結(jié)果表明,,Swin Transformer模型在測(cè)試集中分類(lèi)準(zhǔn)確率達(dá)859%,與ShuffleNet,、ResNet-34,、MobileNet、AlexNet模型相比分別提高1.8,、4.0,、12.8、23.4個(gè)百分點(diǎn),;VGG-ST模型分類(lèi)準(zhǔn)確率達(dá)89.5%,,與原Swin Transformer模型相比提高3.6個(gè)百分點(diǎn)。該研究可為奶牛糞便形態(tài)自動(dòng)篩查機(jī)器人研發(fā)提供方法參考,。

    Abstract:

    Accurate and rapid identification of cow manure morphology is of great significance for monitoring and precise management of cow gastrointestinal health. In response to the problems of strong artificial dependence and difficulty in identification in current cow manure recognition methods, a method for identifying cow thin, loose, hard, and normal manure was proposed based on the VGG-ST (VGG-Swin Transformer) model. Firstly, a total of 879 images of the four different forms of manures was collected from lactating Holstein cows and augmented to 5580 images using operations such as flipping and rotation as the dataset. Then, five typical deep learning image classification models, namely Swin Transformer, AlexNet, ResNet-34, ShuffleNet and MobileNet, were selected for cow manure classification research. Through comparative analysis, Swin Transformer was determined to be the optimal base classification model. Finally, the VGG-ST model combined the VGG model with the Swin Transformer model. The VGG model was utilized to capture local features of cow manure, while the Swin Transformer model extracted global self-attention features. After feature concatenation, the cow manure images were classified. The experimental results showed that the Swin Transformer model achieved a classification accuracy of 85.9% on the testing set, which was 1.8 percentage points, 4.0 percentage points, 12.8 percentage points, and 23.4 percentage points higher than that of ShuffleNet, ResNet-34, MobileNet, and AlexNet, respectively. The classification accuracy of the VGG-ST model was 89.5%, which was 3.6 percentage points higher than that of the original Swin Transformer model. The research result provided a method reference for the development of automatic inspection robots for cow manure morphology.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

紀(jì)寶鋒,李斌,衛(wèi)勇,趙文文,周孟創(chuàng).基于VGG-ST模型的奶牛糞便形態(tài)分類(lèi)方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s1):245-251. JI Baofeng, LI Bin, WEI Yong, ZHAO Wenwen, ZHOU Mengchuang. Cow Manure Classification Method Based on VGG-ST Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):245-251.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼