ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v7的生豬群體體溫?zé)峒t外自動(dòng)檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

科技創(chuàng)新2030-重大項(xiàng)目(2021ZD0113801)和財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-35)


Automatic Detection Method of Body Temperature in Herd of Pigs Based on Improved YOLO v7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)當(dāng)前生豬規(guī)模化養(yǎng)殖過(guò)程中基于熱紅外技術(shù)的生豬體溫測(cè)量效率低的問(wèn)題,,提出了一種基于改進(jìn)YOLO v7的生豬群體體溫檢測(cè)方法,。改進(jìn)YOLO v7算法在Head層引入VoV-GSCSP結(jié)構(gòu),降低網(wǎng)絡(luò)結(jié)構(gòu)復(fù)雜度,;使用內(nèi)容感知特征重組(Content-aware reassembly of features,,CARAFE)替換模型原始上采樣算子,,提高特征圖放大后的品質(zhì),強(qiáng)化生豬頭部區(qū)域有效特征,;引入感受野增強(qiáng)模塊(Receptive field enhancement module,,RFE),增強(qiáng)特征金字塔對(duì)生豬頭部特征的提取能力,。本文改進(jìn)YOLO v7算法對(duì)于生豬頭部的檢測(cè)精確率為87.9%,,召回率為92.5%,平均精度均值(Mean average precision,,mAP)為94.7%,。與原始YOLO v7相比,精確率提高3.6個(gè)百分點(diǎn),,召回率提高7.0個(gè)百分點(diǎn),,mAP提高3.6個(gè)百分點(diǎn)。該方法首先自動(dòng)檢測(cè)生豬頭部區(qū)域,,再利用頭部最大溫度與耳根溫度的高相關(guān)性,,最終自動(dòng)獲取生豬體溫。溫度提取平均絕對(duì)誤差僅為0.16℃,,檢測(cè)速度為222f/s,實(shí)現(xiàn)了生豬群體體溫的實(shí)時(shí)精準(zhǔn)檢測(cè),。綜合上述試驗(yàn)結(jié)果表明,,該方法能夠自動(dòng)定位生豬群體的頭部區(qū)域,滿足生豬群體體溫測(cè)定的高效和高精度要求,,為群養(yǎng)生豬體溫自動(dòng)檢測(cè)提供了有效的技術(shù)支撐,。

    Abstract:

    The efficiency of pig body temperature measurement based on thermal infrared technology is low in the process of large-scale pig breeding. Temperature detection method in herd of pigs based on improved YOLO v7 was proposed, and an automatic pig head detection model was constructed. The VoV-GSCSP structure was introduced at the Head layer to reduce the complexity of the network structure. The content-aware reassembly of features (CARAFE) was used to replace the original up-sampling operator of the model to improve the quality of the feature map after zooming in, and strengthen the effective features in the head region of the pig;the receptive field enhancement module (RFE) was introduced to enhance the extraction capability of the feature pyramid on the head region of the pig. RFE was applied to enhance the extraction capability of the feature pyramid for the head region of pigs. The improved YOLO v7 algorithm had a detection accuracy of 87.9%, recall rate of 92.5%, and mean average precision (mAP) of 94.7% for the pig head. Compared with the original YOLO v7, the accuracy was increased by 3.6 percentage points, the recall was increased by 7.0 percentage points, and the mAP was increased by 3.6 percentage points. The average absolute error of temperature extraction of this method was only 0.16℃, and the detection speed was 222 frames/s, which realized the real-time accurate detection of body temperature of group pigs. Comprehensive results of the above experiments showed that the method can automatically localize the head region of pigs, meet the requirements of high efficiency and high precision for the determination of body temperature of pigs, and provide effective technical support for the automatic detection of body temperature in herd of pigs.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉曉文,曾雪婷,李濤,劉剛,丁向東,米陽(yáng).基于改進(jìn)YOLO v7的生豬群體體溫?zé)峒t外自動(dòng)檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s1):267-274. LIU Xiaowen, ZENG Xueting, LI Tao, LIU Gang, DING Xiangdong, MI Yang. Automatic Detection Method of Body Temperature in Herd of Pigs Based on Improved YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):267-274.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼