ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于人工智能的魚類行為識(shí)別研究綜述
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2020B0202010009)


Review of Fish Behavior Recognition Methods Based on Artificial Intelligence
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    魚類行為識(shí)別對(duì)于生態(tài)學(xué),、水產(chǎn)養(yǎng)殖、漁業(yè)資源管理等方面具有重要意義,,可以通過其行為模式判斷其生長(zhǎng)發(fā)育狀況和活動(dòng)水平,,并間接評(píng)估環(huán)境因素對(duì)其影響,以減少魚類生長(zhǎng)應(yīng)激反應(yīng),,提高資源利用效率,,為水產(chǎn)養(yǎng)殖的智能化發(fā)展奠定基礎(chǔ)。近年來,,基于人工智能技術(shù)的魚類行為識(shí)別方法受到廣泛關(guān)注,,其具有無損性、低成本等優(yōu)勢(shì),。本文綜述了近5年基于卷積神經(jīng)網(wǎng)絡(luò),、循環(huán)神經(jīng)網(wǎng)絡(luò)、雙流卷積神經(jīng)網(wǎng)絡(luò)等人工智能方法的魚類行為識(shí)別技術(shù),,對(duì)魚類行為識(shí)別方法及數(shù)據(jù)集進(jìn)行了歸納與分析,,在此基礎(chǔ)上,對(duì)未來的研究進(jìn)行討論與展望,。

    Abstract:

    With the rapid development and expansion of global aquaculture and the diversification of farming models, the scale, intelligence, and informatization of the aquaculture industry have become trends in its development. Fish behavior recognition is of significant importance in ecology, aquaculture, and fisheries resource management. It enables the assessment of fish growth, developmental status, and activity levels based on their behavioral patterns, indirectly evaluating the impact of environmental factors. This can help reduce stress responses in fish growth, improve resource utilization efficiency, and lay the foundation for intelligent development in aquaculture. Traditional fish behavior identification mainly relies on manual observation and recording, which consumes a considerable amount of time and effort and is subject to subjectivity and uncertainty. In recent years, fish behavior recognition methods based on artificial intelligence get extensive attention, is lossless, such as low cost advantage. The fish behavior recognition technologies were reviewed based on artificial intelligence over the past five years, including convolutional neural networks, recurrent neural networks, and two-stream convolutional neural networks. It also provided a summary and analysis of fish behavior recognition methods and datasets. Based on these foundations, an outlook on future research directions was discussed and provided.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

彭秋珺,李蔚然,李振波.基于人工智能的魚類行為識(shí)別研究綜述[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s1):283-295. PENG Qiujun, LI Weiran, LI Zhenbo. Review of Fish Behavior Recognition Methods Based on Artificial Intelligence[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):283-295.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼