ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CycleGAN和注意力增強(qiáng)遷移學(xué)習(xí)的小樣本魚類識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

青島海洋科技中心山東省專項(xiàng)經(jīng)費(fèi)項(xiàng)目(2022QNLM030001-2)和中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2022XT06)


Recognition of Small Sample Cultured Fish Based on CycleGAN and Attention Enhanced Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    圍繞水產(chǎn)養(yǎng)殖水下目標(biāo)精準(zhǔn)識(shí)別的產(chǎn)業(yè)發(fā)展需求,針對(duì)小樣本目標(biāo)識(shí)別精度低,、模型算法場(chǎng)景適應(yīng)能力差等問(wèn)題,,提出一種基于改進(jìn)循環(huán)對(duì)抗網(wǎng)絡(luò)(Cycle constraint adversarial network, CycleGAN)樣本擴(kuò)增和注意力增強(qiáng)遷移學(xué)習(xí)的小樣本養(yǎng)殖魚類識(shí)別方法。利用水下采樣裝備收集實(shí)際養(yǎng)殖場(chǎng)景和可控養(yǎng)殖場(chǎng)景大黃魚圖像,,并以可控場(chǎng)景圖像作為輔助樣本集,。利用CycleGAN為基礎(chǔ)框架實(shí)現(xiàn)輔助樣本到實(shí)際養(yǎng)殖場(chǎng)景圖像的遷移,并提出一種基于最大平均差異(Maximum mean discrepancy, MMD)的遷移模型損失函數(shù)優(yōu)化方法,。在遷移學(xué)習(xí)階段使用ResNet50為基礎(chǔ)框架,,并引入SK-Net(Selective kernel network)注意力機(jī)制優(yōu)化模型對(duì)不同感受野目標(biāo)的感知能力,提升模型對(duì)無(wú)約束魚類目標(biāo)的識(shí)別精度,。試驗(yàn)結(jié)果表明,本文方法有效提升了小樣本魚類目標(biāo)的識(shí)別能力,,魚類識(shí)別召回率達(dá)到94.33%,,平均精度均值達(dá)到96.67%,為魚類行為跟蹤和表型測(cè)量提供了有效的技術(shù)支撐,。

    Abstract:

    Focusing on the industrial development needs of accurate underwater target recognition in aquaculture, and aiming at the problems of low target recognition accuracy of small samples and poor adaptability of model algorithm to scenarios, a small sample aquaculture fish recognition method based on improved cycle constraint adversarial network (CycleGAN) sample amplification and attention enhancement transfer learning was proposed. Firstly, the underwater sampling equipment was used to collect the images of the actual and controllable breeding scenes of Larimichthys crocea, and the controllable scene images were used as the auxiliary sample set. CycleGAN was used as the basic framework to realize the migration of auxiliary samples to the actual breeding scene images. In particular, an optimization method of the loss function of the migration model based on the maximum mean discrepancy (MMD) was proposed. Then in the transfer learning phase, ResNet50 was used as the basic framework, and SK-Net (selective kernel network) attention mechanism optimization model was introduced to improve the perception ability of different receptive field targets, so as to improve the recognition accuracy of the model for unconstrained fish targets. The experimental results showed that the method proposed effectively improved the recognition ability of fish small sample targets, with a recall rate of 94.33% of fish recognition, and an mAP of 96.67%, providing effective technical support for the next step of fish behavior tracking and phenotype measurement.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉世晶,劉陽(yáng)春,錢程,鄭浩君,周捷,張成林.基于CycleGAN和注意力增強(qiáng)遷移學(xué)習(xí)的小樣本魚類識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s1):296-302. LIU Shijing, LIU Yangchun, QIAN Cheng, ZHENG Haojun, ZHOU Jie, ZHANG Chenglin. Recognition of Small Sample Cultured Fish Based on CycleGAN and Attention Enhanced Transfer Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):296-302.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼