ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)ResNeXt50殘差網(wǎng)絡(luò)的錦鯉選美方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32073029),、山東省自然科學(xué)基金重點(diǎn)項(xiàng)目(ZR2020KC027)和山東省研究生教育質(zhì)量提升計(jì)劃項(xiàng)目(SDYJG19134)


Beauty Pageant of Koi Method Based on Improved ResNeXt50 Residual Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    錦鯉選美的不同等級之間具有高相似度的特點(diǎn),,目前都是人工進(jìn)行選美分級。為解決人工選美所存在的效率低,、主觀性強(qiáng),、成本高的問題,提出了一種基于遷移學(xué)習(xí)和改進(jìn)ResNeXt50殘差網(wǎng)絡(luò)的錦鯉選美方法,。本文首先構(gòu)建了紅白,、大正、昭和3種錦鯉的選美等級數(shù)據(jù)集,。其次,,采用遷移學(xué)習(xí)策略提高訓(xùn)練速度,并從SE注意力模塊,、Hardswish激活函數(shù)和Ranger優(yōu)化器3方面對ResNeXt50模型進(jìn)行了改進(jìn),,構(gòu)建了SH-ResNeXt50錦鯉選美分級模型。試驗(yàn)結(jié)果表明:SH-ResNeXt50模型有效提升了錦鯉選美的等級分選能力,,模型準(zhǔn)確率達(dá)95.6%,,損失值僅0.074,優(yōu)于常用的AlexNet,、GoogLeNet,、ResNet50和ResNeXt50網(wǎng)絡(luò)模型。最后,,采用Grad-CAM分析SH-ResNeXt50模型的可解釋性,,結(jié)果表明SH-ResNeXt50模型和人工識別的感興趣區(qū)域基本一致。本文所提出的方法實(shí)現(xiàn)了具有高相似度的錦鯉不同等級的智能分選,,對其它具有高相似度的生物等級分選具有借鑒意義。

    Abstract:

    There is a high similarity among different levels of the koi for beauty pageant, and beauty grading for koi is currently done manually. To solve these problems of low efficiency, strong subjectivity and high cost of manual beauty pageants, a sorting method for koi beauty pageant was proposed based on transfer learning and improved ResNeXt50 residual network. Firstly, a rank dataset was constructed for the beauty pageant on Kohaku, Taisho and Showa koi. Secondly, the transfer learning strategy was adopted to improve the training speed and improve the ResNeXt50 model from three aspects of SE attention module, Hardswish activation function and Ranger optimizer, further a SH-ResNeXt50 classification model was proposed and constructed for koi pageant. The experimental results showed that the SH-ResNeXt50 model effectively improved the sorting ability for koi beauty pageant, with an accuracy of 95.6% and a loss value of only 0.074, which was better than the commonly used AlexNet, GoogLeNet, ResNet50 and ResNeXt50 network models. Finally, the interpretability of SH-ResNeXt50 model was analyzed by Grad-CAM, and the results showed that the regions of interest of SHResNeXt50 model was basically consistent with those recognized by the humans. The approach proposed realized the intelligent sorting of different levels of koi beauty pageant with high similarity, which had reference significance for other biological level sorting with high similarity.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王軍龍,宣魁,熊海濤,王峰,李娟.基于改進(jìn)ResNeXt50殘差網(wǎng)絡(luò)的錦鯉選美方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s1):330-337. WANG Junlong, XUAN Kui, XIONG Haitao, WANG Feng, LI Juan. Beauty Pageant of Koi Method Based on Improved ResNeXt50 Residual Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):330-337.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼