ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Android手機(jī)的田間棉花產(chǎn)量預(yù)測(cè)系統(tǒng)設(shè)計(jì)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

兵團(tuán)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019AB007),、塔里木大學(xué)現(xiàn)代農(nóng)業(yè)工程重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(TDNG2021101)、塔里木大學(xué)創(chuàng)新研究團(tuán)隊(duì)項(xiàng)目(TDZKCX202103)和兵團(tuán)第一師科技項(xiàng)目(2022XX06)


Field Cotton Yield Prediction System Based on Android Mobile Phone
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    棉花是我國(guó)的重要經(jīng)濟(jì)作物,,棉花產(chǎn)量預(yù)測(cè)有助于經(jīng)濟(jì)調(diào)控和調(diào)節(jié)種植模式,,提高生產(chǎn)收益。目前,,傳統(tǒng)人工測(cè)產(chǎn)方法存在勞動(dòng)強(qiáng)度大,,測(cè)量精度底等問(wèn)題。為解決這一問(wèn)題,選用噴灑脫葉劑后的棉花圖像為研究對(duì)象,,并構(gòu)建相關(guān)數(shù)據(jù)集,,同時(shí)以單位面積中的棉花株數(shù)、棉鈴數(shù)和單鈴籽棉質(zhì)量的計(jì)算公式和改進(jìn)的YOLO v5算法模型為核心算法,,設(shè)計(jì)基于Android移動(dòng)端的棉花產(chǎn)量預(yù)測(cè)系統(tǒng),。通過(guò)選擇手機(jī)拍照或選擇調(diào)用相冊(cè)兩種方式獲取圖像信息,對(duì)目標(biāo)圖像進(jìn)行數(shù)據(jù)分析處理,,實(shí)現(xiàn)棉花的產(chǎn)量預(yù)測(cè),。以圖像中棉花的檢測(cè)框檢測(cè)出棉花棉鈴,根據(jù)不同的土壤類(lèi)型,,自動(dòng)計(jì)算出每公頃的棉花產(chǎn)量,,與實(shí)際產(chǎn)量對(duì)比顯示,,實(shí)際產(chǎn)量和預(yù)測(cè)產(chǎn)量的籽棉和皮棉平均誤差為122.01kg/hm2和57.98kg/hm2,,且模型在手機(jī)端的精度較高,準(zhǔn)確率P和召回率R為90.95%和73.16%,,與原YOLO v5模型相比,,提升19.58、16.84個(gè)百分點(diǎn),,在3種類(lèi)型的手機(jī)上進(jìn)行對(duì)比檢測(cè)后,,系統(tǒng)運(yùn)行時(shí)間平穩(wěn),產(chǎn)量預(yù)測(cè)結(jié)果相差不大,。結(jié)果表明,,設(shè)計(jì)的棉花產(chǎn)量預(yù)測(cè)系統(tǒng)在田間測(cè)產(chǎn)結(jié)果和算法運(yùn)行性能較為良好,可以為棉花產(chǎn)量的預(yù)測(cè)提供技術(shù)參考,。

    Abstract:

    Cotton is an important economic crop in China,,and the prediction of cotton yield helps in economic regulation and regulation of planting patterns,thereby improving production returns. At present,,traditional manual production measurement methods have problems such as high labor intensity and low measurement accuracy. To solve this problem,,cotton images after spraying defoliant were selected as the research object,and relevant datasets were constructed. At the same time,, the calculation formula for the number of cotton plants,, cotton bolls, and single boll seed cotton quality per unit area and the improved YOLO v5 algorithm model were used as the core algorithm to design a cotton yield prediction system based on Android mobile devices. Image information was obtained by choosing to take photos on a mobile phone or calling an album,, and performing data analysis and processing on the target image to achieve cotton yield prediction. Using the detection box of cotton in the image to detect cotton bolls,, the cotton yield per hectare was automatically calculated based on different soil types. Compared with the actual yield, the average error between the actual yield and predicted yield of seed cotton and lint was 122.01kg/hm2 and 57.98kg/hm2,, and the model had high accuracy on the mobile phone. Compared with the original YOLO v5 model,, the accuracy P and recall R were increased by 19.58 percentage points and 16.84 percentage points, respectively, with values of 90.95% and 73.16%. After comparative testing on three types of mobile phones,, the system ran smoothly and the yield prediction results did not differ significantly. The results indicated that the designed cotton yield prediction system had good performance in field yield measurement and algorithm operation,, and can provide technical reference for cotton yield prediction.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

胡燦,王興旺,王旭峰,賀小偉,郭文松,王龍.基于Android手機(jī)的田間棉花產(chǎn)量預(yù)測(cè)系統(tǒng)設(shè)計(jì)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(s2):252-259,277. HU Can, WANG Xingwang, WANG Xufeng, HE Xiaowei, GUO Wensong, WANG Long. Field Cotton Yield Prediction System Based on Android Mobile Phone[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s2):252-259,277.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2023-08-30
  • 出版日期:
文章二維碼