ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多注意力機制與編譯圖神經(jīng)網(wǎng)絡的高光譜圖像分類
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(62166005)、國家重點研發(fā)計劃項目(2018AAA0101800),、貴州省科技支撐計劃項目(QKH[2022]130,、QKH[2022]003、 QKH[2021]335)和貴陽市科技人才培養(yǎng)對象及培養(yǎng)項目(ZKHT[2023]48-8)


Hyperspectral Image Classification Based on Multi-attention Mechanism and Compiled Graph Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對高光譜圖像(Hyperspectral image,,HSI)分類研究中小樣本學習時,無法達到理想分類效果的問題,,以多注意力機制融合,、編譯圖神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡有機結(jié)合提出了一種新的高光譜圖像分類方法。設計了一種基于混合注意力機制的網(wǎng)絡(Multiple mixed attention convolutional neural network,MCNN)與編譯圖神經(jīng)網(wǎng)絡(Compiled graph neural network,CGNN),在學習樣本有限的情況下,,其能有效保留HSI的光譜與空間信息,。引入的圖編碼器與圖解碼器可以有效地映射不規(guī)則的HSI地物類別特征信息。設計的多注意力機制可以重點關注一些重要的空間像素特征,。研究了不同訓練樣本下對不同算法學習示例分類的影響,,在公共數(shù)據(jù)集Botswana (BS)的實驗表明,,本文方法比CEGCN(CNN-enhanced graph convolutional network)、WFCG(Weighted feature fusion of convolutional neural network)算法總體分類精度(Overall classification accuracy,OA)分別高2.72,、3.86個百分點,。同樣在IndianPines(IP)數(shù)據(jù)集上僅用3%訓練樣本數(shù)據(jù)的實驗結(jié)果顯示,本研究方法比CEGCN與WFCG算法的OA分別高0.44,、1.42個百分點,。說明本研究提出的方法不僅對HSI具有良好的空間與光譜信息感知能力,而且在微小學習數(shù)據(jù)下仍然表現(xiàn)出強有力的分類準確性,。

    Abstract:

    In recent years, although some scholars have achieved satisfactory research results on hyperspectral image (HSI) classification, they often fail to achieve ideal classification results when facing small sample learning. Aiming at this problem, a hyperspectral image classification method was proposed by the organic combination of multi-attention mechanism fusion, compiled graph neural network and convolutional neural network. Firstly, a type of multiple mixed attention convolutional neural network (MCNN) and compiled graph neural network (CGNN) was designed, which can effectively retain the spectral and spatial information of HSI with limited learning samples; secondly, the introduced graph encoder and graph decoder can effectively map irregular HSI feature information; finally, the designed multi-attention mechanism can focus on some important HSI feature categories. In addition, the effect of different training samples on different algorithms for learning example classification was also investigated. Experiments on the public dataset Botswana (BS) showed that the proposed method improved the overall classification accuracy (OA) by 2.72 percentage points and 3.86 percentage points compared with the current state-of-the-art algorithms (CNN-enhanced graph convolutional network, CEGCN; weighted feature fusion of convolutional neural network, WFCG).Similarly, the experimental results on the IndianPines (IP) dataset with only 3% of the training sample data showed that the method also improved the OA of the current state-of-the-art algorithms (CEGCN and WFCG) by 0.44 percentage points and 1.42 percentage points, respectively. This demonstrated that the proposed method not only had good spatial and spectral information perception for HSI, but also showed strong classification accuracy with small learning data.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫杰,楊靜,丁書杰,李少波,胡建軍.基于多注意力機制與編譯圖神經(jīng)網(wǎng)絡的高光譜圖像分類[J].農(nóng)業(yè)機械學報,2024,55(3):183-192. SUN Jie, YANG Jing, DING Shujie, LI Shaobo, HU Jianjun. Hyperspectral Image Classification Based on Multi-attention Mechanism and Compiled Graph Neural Networks[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):183-192.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-01-14
  • 出版日期:
文章二維碼