ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于神經(jīng)輻射場(chǎng)的苗期作物三維建模和表型參數(shù)獲取
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

寧夏回族自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021BBF02027),、國(guó)家自然科學(xué)基金項(xiàng)目(52269015)和寧夏自然科學(xué)基金優(yōu)秀青年項(xiàng)目(2023AAC05013)


Three-dimensional Reconstruction and Phenotype Parameters Acquisition of Seeding Vegetables Based on Neural Radiance Fields
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    苗期作物三維結(jié)構(gòu)的精準(zhǔn)高效重建是獲取表型信息的重要基礎(chǔ),。傳統(tǒng)的三維重建大多基于運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)-多視圖立體視覺(Structure from motion and multi-view stereo,SFM-MVS)算法,,計(jì)算成本高,難以滿足快速獲取表型參數(shù)的需求,。本研究提出一種基于神經(jīng)輻射場(chǎng)(Neural radiance fields,,NeRF)的苗期作物三維建模和表型參數(shù)獲取系統(tǒng),利用手機(jī)獲取不同視角下的RGB影像,,通過(guò)NeRF算法完成三維模型的構(gòu)建,。在此基礎(chǔ)上,利用點(diǎn)云庫(kù)(Point cloud library,,PCL)中的直線擬合和區(qū)域生長(zhǎng)等算法自動(dòng)分割植株,,并采用距離最值遍歷、圓擬合和三角面片化等算法實(shí)現(xiàn)了精準(zhǔn)測(cè)量植株的株高,、莖粗和葉面積等表型參數(shù),。為評(píng)估該方法的重建效率和表型參數(shù)測(cè)量精度,本研究分別選取辣椒,、番茄,、草莓和綠蘿的苗期植株作為試驗(yàn)對(duì)象,對(duì)比NeRF算法與SFM-MVS算法的重建結(jié)果,。結(jié)果表明,,以SFM-MVS方法重建點(diǎn)云為基準(zhǔn),NeRF方法重建的各植株點(diǎn)云點(diǎn)對(duì)距離均方根誤差僅為0.128~0.395cm,,兩者重建質(zhì)量較接近,,但在重建速度方面,,本文研究方法相比于SFM-MVS方法平均重建速度提高700%。此外,,該方法提取辣椒苗株高,、莖粗決定系數(shù)(R2)分別為0.971和0.907,均方根誤差(RMSE)分別為0.86cm和0.017cm,,對(duì)各苗期植株葉面積提取的R2為0.909~0.935,,RMSE為0.75 ~3.22cm2,具有較高的測(cè)量精度,。本研究提出的方法可以顯著提高三維重建和表型參數(shù)獲取效率,,從而為作物育種選苗提供更為高效的技術(shù)手段。

    Abstract:

    Accurate and efficient reconstruction of seedling crop structures is crucial for obtaining phenotype parameters. The traditional method for 3D reconstruction based on the structure from motion and multi-view stereo (SFM-MVS) algorithm, which had high reconstruction accuracy and high computional cost. It was difficult to meet the demand for rapid acquisition of phenotype parameters. A system for acquiring phenotype parameters and creating 3D models of seedling crops was proposed by using neural radiance fields (NeRF). The system utilized smart phone to capture RGB images of the objects from various viewpoints and constructed the 3D model through the NeRF algorithm. The algorithms of line fitting and region growing in point cloud library (PCL) were used to automatically segment the plants. Additionally, the algorithms of distance-minimum traversal, circle fitting, and triangulation were used to measure phenotype parameters such as plant height, stem diameter, and leaf area. To assess the reconstruction efficiency and accuracy of phenotype parameter measurement, seedling plants of pepper, tomato, strawberry and epipremnum aureum were selected as subjects. The reconstruction results were compared by using the NeRF and the SFM-MVS algorithm. The results indicated that both methods were capable of achieving superior reconstruction outcomes. The root mean square errors of the point-to-point distances of each seedlings were only 0.128cm to 0.359cm. But in terms of speed, this method improved the reconstruction speed by an average of 700% compared with the SFM-MVS method. The method used to extract plant height and stem diameter of chili pepper seedlings had a coefficient of determination (R2) of 0.971 and 0.907, respectively. The root mean square error (RMSE) was 0.86cm and 0.017cm, respectively. The R2 of the leaf area extracted from the plants at seedling stage ranged from 0.909 to 0.935, and the RMSE ranged from 0.75cm2 to 3.22cm2, indicating a high level of accuracy in measurement. The proposed method can significantly speed up 3D reconstruction and acquisition of phenotype parameters. This would provide a more efficient technical means for vegetable breeding and seedling selection.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

朱磊,江偉,孫伯顏,柴明堂,李賽駒,丁一民.基于神經(jīng)輻射場(chǎng)的苗期作物三維建模和表型參數(shù)獲取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(4):184-192,,230. ZHU Lei, JIANG Wei, SUN Boyan, CHAI Mingtang, LI Saiju, DING Yimin. Three-dimensional Reconstruction and Phenotype Parameters Acquisition of Seeding Vegetables Based on Neural Radiance Fields[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):184-192,,230.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期:
文章二維碼