ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Sentinel-2影像的黃河南岸典型改良示范區(qū)土壤含鹽量反演模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2021YFD1900605)、內(nèi)蒙古自治區(qū)科技計劃項目(2021GG0369)和國家自然科學(xué)基金項目(52069020)


Soil Salt Inversion of Typical Improvement Demonstration Area of South Bank of Yellow River Based on Sentinel-2 Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    土壤鹽漬化嚴(yán)重制約農(nóng)田土壤環(huán)境的循環(huán)發(fā)展,,高效準(zhǔn)確地監(jiān)測土壤鹽分動態(tài)變化對鹽堿地改良利用具有重要意義,。為及時、有效地監(jiān)測鹽漬化土壤含鹽量,,以內(nèi)蒙古黃河南岸灌區(qū)的4個典型鹽堿化耕地改良示范區(qū)為例,,利用Sentinel-2多光譜遙感影像,,同步采集示范區(qū)內(nèi)表層土壤的含鹽量數(shù)據(jù),通過相關(guān)性分析篩選敏感光譜指標(biāo),,基于偏最小二乘回歸(PLSR),、逐步回歸(SR)、嶺回歸(RR)3種簡單機(jī)器學(xué)習(xí)模型和深度學(xué)習(xí)Transformer模型建模,,最后進(jìn)行精度評價并優(yōu)選出最佳含鹽量反演模型,。結(jié)果表明:示范區(qū)土壤反射率的可見光、紅邊,、近紅外波段反射率均與土壤含鹽量呈正相關(guān),,短波紅外波段反射率與土壤含鹽量呈負(fù)相關(guān),引入光譜指數(shù)能夠有效提升Sentinel-2遙感影像與示范區(qū)表層土壤含鹽量的相關(guān)性(相關(guān)系數(shù)絕對值不小于0.32),;對比不同模型發(fā)現(xiàn)深度學(xué)習(xí)Transformer模型優(yōu)于簡單機(jī)器學(xué)習(xí)模型,,驗證集決定系數(shù)R2和均方根誤差(RMSE)分別為0.546和 2.687g/kg;含鹽量反演結(jié)果與實地結(jié)果相吻合,,為更精準(zhǔn)反演內(nèi)蒙古黃河南岸灌區(qū)鹽漬化程度提供了參考,。

    Abstract:

    Soil salinization seriously restricts the circular development of farmland economic production, and it is of great significance to monitor the dynamic change of soil salinity efficiently and accurately for the improvement and utilization of saline-alkali land. To timely and effectively monitor saline content in four typical salinized farmland improvement demonstration areas on the south bank of the Yellow River in Inner Mongolia, for example, using Sentinel-2 multispectral remote sensing image, synchronous collecting the surface soil salt data, screening sensitive spectral index through correlation analysis, based on three simple machine learning models of PLSR, SR and RR and Transformer deep learning model, finally precision evaluation and optimization of the best salt inversion model was carried out. The results showed that the visible light, red edge, and nearred band reflectance values of soil reflectivity in the demonstration area were positively correlated with soil salt content. The reflectivity values of the short-wave infrared band were negatively correlated with soil salt content. Introducing spectral index can effectively improve the correlation between Sentinel-2 remote sensing images and the salt content of the surface soil in the demonstration area (|r|≥0.32). A comparison of different models found that the Transformer deep learning model outperformed the simple machine learning model, and the R2 and RMSE of the validation set were 0.546 and 2.687g/kg;the salt inversion results were consistent with the field results, which provided a reference for more accurate inversion and improvement of the salinization degree in the south bank of the Yellow River in Inner Mongolia.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王宇璇,屈忠義,白燕英,劉霞,劉全明,劉琦.基于Sentinel-2影像的黃河南岸典型改良示范區(qū)土壤含鹽量反演模型[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(4):290-299,439. WANG Yuxuan, QU Zhongyi, BAI Yanying, LIU Xia, LIU Quanming, LIU Qi. Soil Salt Inversion of Typical Improvement Demonstration Area of South Bank of Yellow River Based on Sentinel-2 Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):290-299,,439.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期:
文章二維碼