ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于校正光譜序列融合的小麥腥黑穗病籽粒分類方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省自然科學(xué)基金面上項目(BK20221518)和江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項目(CX(23)1002)


Classification of Common Bunt of Wheat Kernels Based on Series Fusion of Scatter Correction Techniques
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對小麥腥黑穗病輕度患病籽粒易與健康籽粒混淆,,人工識別難度大的問題,,將校正光譜序列融合技術(shù)與深度學(xué)習(xí)模型相結(jié)合,實(shí)現(xiàn)小麥腥黑穗病籽??焖?、精準(zhǔn)分類。以健康,、輕度患病,、重度患病各300粒小麥籽粒的高光譜數(shù)據(jù)為樣本,通過多元散射校正算法(MSC)和標(biāo)準(zhǔn)正態(tài)變換算法(SNV)對原始光譜進(jìn)行預(yù)處理,,并利用二維相關(guān)光譜法(2D-COS)分析SNV與MSC算法處理后的光譜之間的互補(bǔ)性,。使用校正光譜序列融合技術(shù)將原始光譜、SNV預(yù)處理光譜與MSC預(yù)處理光譜三者進(jìn)行融合得到序列融合光譜,,以充分利用不同光譜預(yù)處理數(shù)據(jù)間的互補(bǔ)信息,。最終,利用序列融合光譜數(shù)據(jù)建立基于ResNet 50算法的小麥腥黑病分類模型。試驗結(jié)果表明,,序列融合光譜ResNet 50模型總體準(zhǔn)確率最高為93.89%,F(xiàn)1值為93.87%,,分類性能優(yōu)于單一預(yù)處理光譜建立的ResNet 50模型,。為進(jìn)一步評估模型分類效果,使用序列融合光譜分別建立偏最小二乘判別分析(PLS-DA),、支持向量機(jī)(SVM)以及集成學(xué)習(xí)算法模型隨機(jī)森林(RF)與極端梯度提升樹(XGBoost)模型,,并進(jìn)行對比,結(jié)果顯示:SVM,、PLS-DA,、RF與XGBoost總體準(zhǔn)確率分別為81.67%、84.44%,、89.44%與90.55%,,F(xiàn)1值分別為81.59%、84.04%,、89.49%與90.59%,,ResNet 50總體準(zhǔn)確率與F1值優(yōu)于傳統(tǒng)光譜分析模型。因此,,本研究表明校正光譜序列融合技術(shù)結(jié)合深度學(xué)習(xí)模型,,能夠?qū)崿F(xiàn)對不同患病程度腥黑穗病籽粒的有效分類。

    Abstract:

    An innovative approach that integrated series fusion of scatter correction techniques with deep learning models was introduced to achieve rapid and precise classification of common bunt in wheat kernels. Manual identification of this disease can be particularly challenging, especially in cases with mild infections. To address this challenge, the high-spectral data was leveraged from a sample set comprising 300 kernels, encompassing healthy, mildly infected, and severely infected kernels. The original spectra underwent preprocessing by using the multiplication scatter correction (MSC) and standard normal variate (SNV) algorithms. Furthermore, two-dimensional correlation spectroscopy (2D-COS) analysis was employed to assess the complementarity between spectra processed by SNV and MSC. Subsequently, the series fusion of scatter correction techniques was applied to amalgamate the original spectra, SNVprocessed spectra, and MSC-processed spectra, resulting in fused spectral sequences that harnessed the complementary information from various spectral preprocessing methodologies. Following this, a classification model for wheat common bunt, based on the ResNet 50 algorithm, was developed by using the fused spectral data. Experimental results demonstrated that the ResNet 50 model achieved the highest classification accuracy of 93.89% and an F1-score of 93.87%, surpassing models based on individual preprocessing methods. To further evaluate the classification performance of the model, partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), and ensemble learning algorithms, random forest (RF), and extreme gradient boosting (XGBoost) models were constructed by using the fused spectral data and comparison was done. The results revealed that SVM, PLS-DA, RF, and XGBoost achieved overall recognition accuracies of 81.67%, 84.44%, 89.44%, and 90.55%, respectively, with corresponding F1-scores of 81.59%, 84.04%, 89.49%, and 90.59%. Importantly, the ResNet 50 model outperformed traditional spectral analysis models in terms of overall accuracy and F1-score. In summary, ResNet 50 outperformed traditional spectral analysis models in terms of both overall accuracy and F1-score. In conclusion, this research underscored the efficacy of combining series fusion of scatter correction techniques with deep learning models for the classification of common bunt in wheat kernels at varying infection levels. This approach held promise for the development of rapid and non-destructive detection methods for common bunt in wheat kernels.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

梁琨,宋金鵬,張馳,梅秀明,陳趙越,張靖笛.基于校正光譜序列融合的小麥腥黑穗病籽粒分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(5):263-272. LIANG Kun, SONG Jinpeng, ZHANG Chi, MEI Xiuming, CHEN Zhaoyue, ZHANG Jingdi. Classification of Common Bunt of Wheat Kernels Based on Series Fusion of Scatter Correction Techniques[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(5):263-272.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-24
  • 出版日期:
文章二維碼