ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于FPGA加速的Mask R-CNN稻瘟病高通量自適應(yīng)識別模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃青年科學家項目(2022YFD2000200)和國家自然科學基金(面上)項目(32171895)


Research on High-througput Adaptive Recognition Mask R-CNN Model for Rice Blast Disease Based on FPGA Acceleration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對基于圖像的稻瘟病現(xiàn)場檢測技術(shù)依賴先驗知識且受制于算力與田間網(wǎng)絡(luò)狀況,,無法實現(xiàn)自適應(yīng)實時檢測的問題,提出一種可利用現(xiàn)場可編程門陣列(Field programmable gate array, FPGA)加速的Mask R-CNN(Mask region-based convolutional neural network)稻瘟病高通量自適應(yīng)快速識別模型。首先將骨干網(wǎng)絡(luò)改進為MobileNetV2,利用其倒殘差模塊降低計算量,,提高模型并行處理能力;隨后增加用于稻瘟病多尺度特征融合的特征金字塔網(wǎng)絡(luò)模塊,,使模型具備多尺度自適應(yīng)處理能力;最后由全卷積網(wǎng)絡(luò)(Fully convolutional network,FCN)分支輸出稻瘟病病斑的實例分割,,同時使用交叉熵損失函數(shù)完成稻瘟病的定位與分類,。稻瘟病實測數(shù)據(jù)集對模型的驗證結(jié)果表明:當輸入為全高清圖像時,模型平均推理時間減少至85ms,,相較GPU服務(wù)器,、同級別GPU邊緣計算平臺,速度分別提高86.2%,、63.0%,。在交并比為0.6時,準確率可達98.0%,,病斑捕獲能力平均提升21.2%,。提出的Mask R-CNN自適應(yīng)快速識別模型能夠在田間惡劣網(wǎng)絡(luò)狀況下實現(xiàn)稻瘟病的快速現(xiàn)場檢測,具有更好的抗噪能力和魯棒性能,,為水稻病害實時檢測,、察打一體提供了高效實時的片上系統(tǒng)方案。

    Abstract:

    Image-based on-site detection technology for rice blast relies on prior knowledge which is affected by computational power and field network conditions, rendering adaptive real-time detection impossible. To tackle these challenges, a Mask R-CNN (Mask region-based convolutional neural network) model for rapid, high-throughput, and adaptive identification of rice blast was proposed. This model can be accelerated by using field programmable gate array (FPGA). Firstly, the backbone network was replaced with MobileNetV2, leveraging its inverted residual module to decrease computations and enhance the model’s parallel processing capabilities. Following that, a feature pyramid network module was incorporated to facilitate multi-scale feature fusion for rice blast, enabling the model to possess multi-scale adaptive processing abilities. Finally, the fully convolutional network(FCN) branch outputed the instance segmentation of rice blast lesions, utilizing the Softmax function to accurately localize and classify rice blast diseases. The validation results of the model using test datasets for rice blast disease demonstrated significant capabilities: when the input was a full HD image, the average inference time of the model was reduced to 85ms, which was 86.2% and 63.0% faster than the GPU server and the same level GPU edge computing platform, respectively. When the intersection over union ratio was 0.6, the accuracy can reach 98.0%, and the disease spot capture ability was improved by 21.2% on average. The Mask R-CNN adaptive fast identification model proposedcan realize the rapid field detection of rice blast disease under severe network conditions, and had better anti-noise ability and robust performance, which provided an efficient real-time system-on-chip scheme for real-time detection, inspection and mitigation of rice disease.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊寧,程巍,張釗源,方嘯,毛罕平.基于FPGA加速的Mask R-CNN稻瘟病高通量自適應(yīng)識別模型研究[J].農(nóng)業(yè)機械學報,2024,55(7):298-304,314. YANG Ning, CHENG Wei, ZHANG Zhaoyuan, FANG Xiao, MAO Hanping. Research on High-througput Adaptive Recognition Mask R-CNN Model for Rice Blast Disease Based on FPGA Acceleration[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):298-304,314.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期:
文章二維碼