ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Self-Attention-BiLSTM網(wǎng)絡(luò)的西瓜種苗葉片氮磷鉀含量高光譜檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2019YFD1001901)、湖北省重點研發(fā)計劃項目(2021BBA239)、HZAU-AGIS交叉基金項目(SZYJY2022006),、中央高?;究蒲袠I(yè)務(wù)費專項資金項目(2662022YLYJ010)和國家西甜瓜產(chǎn)業(yè)技術(shù)體系項目(CARS-25)


Hyperspectral Non-destructive Detection of Nitrogen, Phosphorus and Potassium Content of Watermelon Seedling Leaves Based on Self-Attention-BiLSTM Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    元素含量無損檢測技術(shù)可以為植物生長發(fā)育的環(huán)境精準調(diào)控提供關(guān)鍵實時數(shù)據(jù)。以西瓜苗為例,,提出了一種基于圖譜特征融合的氮磷鉀含量深度學(xué)習(xí)檢測方法,。首先,使用高光譜儀拍攝西瓜苗葉片的高光譜圖像,,使用連續(xù)流動化學(xué)分析儀測定葉片的3種元素含量,。然后,采用基線偏移校正(BOC)疊加高斯平滑濾波(GF)的光譜預(yù)處理方法和隨機森林算法(RF)建立預(yù)測模型,,基于競爭性自適應(yīng)重加權(quán)采樣(CARS)和連續(xù)投影算法(SPA) 2種算法初步篩選出特征波長,,再綜合考慮波長數(shù)和建模精度設(shè)計了一種最優(yōu)波長評價方法,將波長數(shù)進一步減少到3~4個,。最后,,提取使用U-Net網(wǎng)絡(luò)分割的彩色圖像顏色和紋理特征,和光譜反射率特征一起作為輸入,,基于自注意力機制-雙向長短時記憶(Self-Attention-BiLSTM)網(wǎng)絡(luò)構(gòu)建了3種元素含量的預(yù)測模型,。實驗結(jié)果表明,氮磷鉀含量預(yù)測的R2分別為0.961,、0.954,、0.958,RMSE分別為0.294%,、0.262%,、0.196%,實現(xiàn)了很好的建模效果,。使用該模型對另2個品種西瓜進行測試,,R2超過0.899、RMSE小于0.498%,,表明該模型具有很好的泛化性。該高光譜建模方法使用少量波長光譜即實現(xiàn)了高精度檢測,,在精度和效率上達成了很好的平衡,,為后續(xù)便攜式高光譜檢測裝備開發(fā)奠定了理論基礎(chǔ)。

    Abstract:

    Element content non-destructive testing technology can provide key real-time data for precise environmental regulation of plant growth and development. Taking watermelon seedlings as an example, a deep learning detection method based on graph feature fusion for nitrogen, phosphorus, and potassium content was proposed. Firstly, high-resolution hyperspectral images of watermelon seedling leaves were captured by using a hyperspectral image. The content of the three elements in the leaves was determined by using a continuous flow chemical analyzer. Then, the BOC-GF spectral preprocessing method and the RF algorithm were used to establish a prediction model. Based on the CARS and SPA algorithms, feature bands were preliminarily selected. Then, considering the number of bands and modeling accuracy, an optimal band evaluation method was designed to further reduce the number of bands to 3~4. Finally, the colour and texture features of the colour images segmented by using the U-Net network were extracted and used as inputs along with the spectral reflectance features to construct a prediction model for the three elemental contents based on the Self-Attention-BiLSTM network. The experimental results showed that the R2 values for predicting nitrogen, phosphorus, and potassium content were 0.961, 0.954, and 0.958, respectively, with corresponding RMSE values of 0.294%, 0.262%, and 0.196%. These results indicated a high level of modeling accuracy. Using this model to test two other varieties of watermelon, the R2 values exceeded 0.899 and the RMSE values were less than 0498%, indicating that the model had excellent generalization ability. This hyperspectral modeling method achieved high accuracy detection with a small number of spectral bands, striking a good balance between precision and efficiency. It laied a solid theoretical foundation for the development of portable hyperspectral detection equipment in the future.

    參考文獻
    相似文獻
    引證文獻
引用本文

徐勝勇,劉政義,黃遠,曾雨,別之龍,董萬靜.基于Self-Attention-BiLSTM網(wǎng)絡(luò)的西瓜種苗葉片氮磷鉀含量高光譜檢測方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(8):243-252. XU Shengyong, LIU Zhengyi, HUANG Yuan, ZENG Yu, BIE Zhilong, DONG Wanjing. Hyperspectral Non-destructive Detection of Nitrogen, Phosphorus and Potassium Content of Watermelon Seedling Leaves Based on Self-Attention-BiLSTM Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(8):243-252.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-08-10
  • 出版日期:
文章二維碼