ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于1DCNN融合多源表型數(shù)據(jù)的楊樹干旱脅迫評估方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2023YFE0123600),、國家自然科學(xué)基金項目(32171790,、32171818)、江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項目(CX(23)3126),、江蘇省333高層次人才培養(yǎng)工程項目和江蘇省研究生科研與實踐創(chuàng)新計劃項目(SJCX24_0365)


Assessment of Poplar Drought Stress Level Based on 1DCNN Fusion of Multi-source Phenotypic Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前關(guān)于不同楊樹品種抗旱性的研究主要集中在利用傳統(tǒng)測量方法獲取形態(tài)結(jié)構(gòu)和生理生化表型參數(shù)進(jìn)而分析楊樹的抗旱性,,依據(jù)多源成像傳感器提取的表型參數(shù)指標(biāo)確定楊樹干旱脅迫等級的方法較為少見。為了闡明楊樹耐旱的表型機(jī)制,、篩選抗旱性樹種和明確楊樹抗旱等級,,本文以楊樹不同性別的喜水和耐旱品種為研究對象,在楊樹苗期進(jìn)行梯度干旱脅迫處理,,通過熱紅外以及RGB多源成像傳感器獲取楊樹冠層溫度參數(shù)與顏色植被指數(shù)表型數(shù)據(jù),,并建立基于1DCNN的多任務(wù)分類模型劃分楊樹苗期品種抗旱等級與干旱脅迫等級等2個分類任務(wù),探究楊樹性別與生長時間對楊樹干旱脅迫響應(yīng)機(jī)制的影響,。結(jié)果表明,,以27組數(shù)據(jù)變量降維后的4個特征作為模型變量,與傳統(tǒng)機(jī)器學(xué)習(xí)算法SVM,、RF,、XGBoost相比,本文提出的1DCNN多任務(wù)分類模型在楊樹品種抗旱等級分類與單株干旱脅迫等級分類2個任務(wù)中的模型分類精度皆達(dá)到最優(yōu),,分類準(zhǔn)確率分別為81.8%和62.3%,;引入楊樹的性別和生長時間后共6個特征作為模型的輸入變量后,,楊樹苗期品種抗旱等級與干旱脅迫等級的分類精度顯著提高,1DCNN多任務(wù)分類模型在2個分類任務(wù)中的準(zhǔn)確率分別達(dá)到93.5%與76.6%,,模型分類準(zhǔn)確率分別提高11.7個百分點與14.3個百分點,。研究結(jié)果表明,通過熱紅外與RGB成像傳感器獲取多源表型數(shù)據(jù),,并建立1DCNN多任務(wù)分類模型對實現(xiàn)楊樹干旱脅迫等級評估的可行性,,同時表明楊樹的性別和生長時間作為模型輸入變量能夠有效提升模型的分類精度,可為篩選楊樹抗旱性品種提供新的思路與方法,。

    Abstract:

    At present, the research on drought resistance of different poplar varieties mainly focuses on using traditional measurement methods to obtain morphological structure and physiological and biochemical phenotypic parameters to analyze the drought resistance of poplars. The method of determining the drought stress level of poplars based on phenotypic parameter indicators extracted by multi-source imaging sensors is relatively rare. In order to clarify the phenotypic mechanism of poplar drought resistance, screen drought-resistant tree species and clarify the drought resistance level of poplars, taking water-loving and drought-resistant varieties of poplars of different genders as the research objects, gradient drought stress treatment at the seedling stage of poplars was conducted. The phenotypic data of poplar canopy temperature parameters and color vegetation index were obtained by thermal infrared and RGB multi-source imaging sensors, and a multi-task classification model based on 1DCNN was established to divide the two classification tasks of poplar seedling variety drought resistance level and drought stress level, so as to explore the influence of poplar gender and growth days on the response mechanism of poplar drought stress. The results showed that compared with the traditional machine learning algorithms SVM, RF and XGBoost, the proposed 1DCNN multi-task classification model achieved the best classification accuracy in the two tasks of poplar variety drought resistance classification and individual drought stress classification, with classification accuracy rates of 81.8% and 62.3% respectively, using the four features after dimension reduction of 27 groups of data variables as model variables. After introducing the sex and growth days of poplars as the input variables of the model, the classification accuracy of the drought resistance and drought stress levels of poplar seedling varieties was significantly improved, and the accuracy of the 1DCNN multi-task classification model in the two classification tasks was 93.5% and 76.6%, respectively, and the classification accuracy of the model was improved by 11.7 percentage points and 14.3 percentage points, respectively. The research results showed that it was feasible to obtain multi-source phenotypic data through thermal infrared and RGB imaging sensors and establish a 1DCNN multi-task classification model to realize the evaluation of poplar drought stress level. At the same time, it was showed that the sex and growth days of poplars as model input variables can effectively improve the classification accuracy of the model, which can provide ideas and methods for screening poplar drought-resistant varieties.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張慧春,周子陽,邊黎明,周磊,鄒義萍,田野.基于1DCNN融合多源表型數(shù)據(jù)的楊樹干旱脅迫評估方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(9):286-296. ZHANG Huichun, ZHOU Ziyang, BIAN Liming, ZHOU Lei, ZOU Yiping, TIAN Ye. Assessment of Poplar Drought Stress Level Based on 1DCNN Fusion of Multi-source Phenotypic Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):286-296.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼