ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于法向量夾角的果樹點(diǎn)云配準(zhǔn)與枝葉分割方法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江蘇省現(xiàn)代農(nóng)機(jī)裝備與技術(shù)示范推廣項(xiàng)目(NJ2022-14)和江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2017370)


Fruit Tree Point Cloud Registration Based on Normal Vector Angles and Branch-Leaf Segmentation Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在實(shí)現(xiàn)果園作業(yè)全自動(dòng)化的過程中,,亟需直接構(gòu)建自然環(huán)境下果樹枝干三維模型的方法,。本文通過對(duì)自然環(huán)境下以不同角度采集的果樹點(diǎn)云進(jìn)行配準(zhǔn),并針對(duì)采樣一致性(SAC-IA)+迭代最近點(diǎn)(ICP)配準(zhǔn)算法在點(diǎn)云配準(zhǔn)中耗時(shí)較長以及精度不高的問題,,結(jié)合點(diǎn)云法向量夾角提取源點(diǎn)云和目標(biāo)點(diǎn)云的特征點(diǎn),,并通過點(diǎn)云法向量夾角的余弦值在源點(diǎn)云和目標(biāo)點(diǎn)云的特征點(diǎn)中查找待匹配點(diǎn)對(duì)的方法,提出了一種基于果樹點(diǎn)云待匹配點(diǎn)對(duì)的改進(jìn)SAC-IA+ICP點(diǎn)云配準(zhǔn)算法,;借助最小包圍盒劃分的分塊技術(shù)對(duì)配準(zhǔn)后的果樹點(diǎn)云進(jìn)行分塊,,然后利用點(diǎn)云的幾何特征,對(duì)劃分的子塊進(jìn)行枝葉粗分割,,最后使用歐氏聚類完成枝葉的精細(xì)分割,。對(duì)比實(shí)驗(yàn)結(jié)果顯示,改進(jìn)后的SAC-IA+ICP算法在平均旋轉(zhuǎn)誤差上相較于原始SAC-IA+ICP算法減少85.44%,,配準(zhǔn)均方根誤差相較于原始SAC-IA+ICP算法減少71.74%,,配準(zhǔn)時(shí)間相較于原始SAC-IA+ICP算法減少97.99%,;同時(shí),,改進(jìn)后的SAC-IA+ICP算法在平均旋轉(zhuǎn)誤差上相較于SAC-IA+NDT算法減少90.38%,配準(zhǔn)均方根誤差相較于SAC-IA+NDT算法減少85.39%,,配準(zhǔn)時(shí)間相較于SAC-IA+NDT算法減少98.04%,。另外,本文采用的枝葉分割算法能夠完成枝葉分割,,且相較于人工分割其分割準(zhǔn)確度可達(dá)94.77%,。

    Abstract:

    In realizing full automation of orchard operations, it is urgent to construct a 3D model of fruit tree branches and trunks in the natural environment directly. Point clouds of fruit trees collected from different views in the natural environment were registered. Considering that sampling consistency (SAC-IA)+iterative nearest point (ICP) registration algorithm took a long time and had low accuracy in point cloud registration. Thus, the feature points of the source point cloud and target point cloud were extracted by combining the angle of the normal vector of the point cloud, and then matching point pairs were found in the feature points of the source and target point clouds based on the cosine value of the angle of the normal vector of the point cloud. Using the matching point pairs of fruit tree point clouds, an improved SAC-IA+ICP point cloud registration algorithm was proposed. Further, the registered fruit tree point cloud was partitioned by using the partitioning technology of minimum box partition, and then the branches and leaves of the partitioned sub-blocks were roughed by using the geometric features of the point cloud; finally, the branches and leaves were partitioned by using Euclidean clustering. Compared with the original SAC-IA+ICP algorithm, the average rotation error was reduced by 85.44%, and the registration root mean square error can be reduced by 71.74%, the registration time was reduced by 97.99%. Meantime,compared with the SAC-IA+NDT algorithm, the average rotation error was reduced by 90.38%, and the registration root mean square error can be reduced by 85.39%, the registration time was reduced by 98.04%. The segmentation algorithm can complete the segmentation of branches and leaves, and the accuracy can reach 94.77% compared with manual segmentation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

韓宏琪,江自真,周俊,顧寶興.基于法向量夾角的果樹點(diǎn)云配準(zhǔn)與枝葉分割方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(9):327-336. HAN Hongqi, JIANG Zizhen, ZHOU Jun, GU Baoxing. Fruit Tree Point Cloud Registration Based on Normal Vector Angles and Branch-Leaf Segmentation Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):327-336.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼