ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于MobileViT-CBAM的枇杷表面缺陷檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX(23)1027)、國家自然科學(xué)基金項(xiàng)目(32102071),、金埔研究院研究專項(xiàng)資金項(xiàng)目(NLJP0005)和水杉師資科研啟動項(xiàng)目(163040193,、163040194)


Detection Method for Loquat Surface Defect Based on MobileViT-CBAM Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實(shí)現(xiàn)枇杷采后快速,、準(zhǔn)確篩選,,本文以MobileViT為主干特征提取網(wǎng)絡(luò),通過分別在Layer1和Layer2層之后嵌入注意力模塊CBAM(Convolutional block attention module),,強(qiáng)化網(wǎng)絡(luò)在通道和空間上對細(xì)節(jié)特征的提取能力,,構(gòu)建了一種輕量化網(wǎng)絡(luò)模型MobileViT-CBAM。相較于MobileViT,,在驗(yàn)證集和測試集上本文方法對疤痕,、機(jī)械傷、腐爛等缺陷果的識別準(zhǔn)確率分別提高1.17、1.23個(gè)百分點(diǎn),。試驗(yàn)結(jié)果表明,,MobileViT-CBAM模型與VGG16、ResNet34,、MobileNetV2相比較,,準(zhǔn)確率最高(97.86%),同時(shí)兼具內(nèi)存占用量?。?.768 MB),、推理時(shí)間短(每幅圖像需42 ms)的優(yōu)勢。該輕量化網(wǎng)絡(luò)模型可部署于嵌入式系統(tǒng),。本研究為構(gòu)建枇杷在線檢測系統(tǒng)提供了缺陷識別理論基礎(chǔ),,為枇杷等農(nóng)產(chǎn)品外部品質(zhì)檢測提供了一個(gè)高效、準(zhǔn)確的方法,。

    Abstract:

    The MobileViT as the main feature extraction network was employed in order to accomplish quick and precise post-harvest screening of loquats in the paper. A lightweight network model called MobileViT-CBAM was developed as a result of strengthening the network’s capacity to extract detailed features in both channel and spatial dimensions by inserting convolutional block attention module (CBAM) after Layer1 and Layer2. The method outperformed MobileViT in terms of defect recognition accuracy, showing gains of 1.17 percentage points on the validation set and 1.23 percentage points on the test set for things like scars, mechanical damage, and decaying fruits. According to experimental results, the MobileViT-CBAM model performed better in terms of accuracy (97.86%) than VGG16, ResNet34, and MobileNetV2. It also had the advantage of having a small memory footprint (3.768 MB) and a rapid inference time (42 ms per image). It was possible to use this lightweight network model on embedded systems. The research offered an effective and precise technique for external quality inspection of loquats and other agricultural products by providing a theoretical framework for fault recognition in the construction of an online detection system for loquats.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙茂程,鄒濤,齊亮,汪希偉,李大偉.基于MobileViT-CBAM的枇杷表面缺陷檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(9):420-427. ZHAO Maocheng, ZOU Tao, QI Liang, WANG Xiwei, LI Dawei. Detection Method for Loquat Surface Defect Based on MobileViT-CBAM Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):420-427.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼