ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SwinS-YOLACT的番茄采摘機器人實時實例分割算法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省重點研發(fā)計劃項目(2023CXGC010715)和中國機械工業(yè)集團有限公司科技專項(ZDZX2023-2)


Real-time Instance Segmentation Algorithm for Tomato Picking Robot Based on SwinS-YOLACT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在設(shè)施番茄種植環(huán)境中,果實重疊遮擋等情況會影響識別精度,。因此,本文提出了一種基于YOLACT的實例分割模型,,提高識別精度,。首先,對果實重疊遮擋的類別進行細分并增加該類數(shù)據(jù)集,,從而接近真實采摘場景,,并在采摘決策中改善重疊遮擋對識別精度的影響;其次,,采用Simple Cope-Paste數(shù)據(jù)增強方法提高了模型的泛化能力,,降低了環(huán)境因素對實例分割效果的干擾;然后,,在YOLACT基礎(chǔ)上,,引用多尺度特征提取技術(shù)克服了單一尺度特征提取的局限性,并降低了模型復(fù)雜度,;最后,,引入Swin Transformer中的Swin-S注意力機制,優(yōu)化了模型對于番茄實例分割的細節(jié)特征提取效果,。實驗結(jié)果表明,,本文模型能夠一定程度上緩解分割結(jié)果中出現(xiàn)的漏檢、誤檢問題,,其目標檢測平均精度為93.9%,,相比于YOLACT、YOLO v8-x,、Mask R-CNN,、InstaBoost分別提升10.4、4.5,、16.3,、3.9個百分點;平均分割精度為80.6%,,相比于上述模型分別提升4.8,、1.5,、7.3、4.3個百分點,;推理速度為25.6f/s,。該模型綜合性能有較強的魯棒性,兼顧了精度與速度,,可為番茄采摘機器人完成視覺任務(wù)提供參考,。

    Abstract:

    In the facility tomato planting environment, the accuracy of automatic fruit picking can be affected by overlapping and occlusion of fruits. An instance segmentation model was proposed based on YOLACT to address this issue. Firstly, the categories of fruit overlap and occlusion were subdivided, and the dataset of this type was increased to simulate real picking scenes and improve recognition accuracy in picking decisions. Secondly, the Simple Copy-Paste data enhancement method was employed to enhance the model’s generalization ability and reduce the interference of environmental factors on instance segmentation. Next, based on YOLACT, multiscale feature extraction technology was used to overcome the limitation of single-scale feature extraction and reduce the complexity of the model. Finally, the Swin-S attention mechanism in Swin Transformer was incorporated to optimize the detailed feature extraction effect for tomato instance segmentation. Experimental results demonstrated that this model can alleviate the problems of missed detection and false detection in segmentation results to a certain extent. It achieved an average target detection accuracy of 93.9%, which was an improvement of 10.4, 4.5, 16.3, and 3.9 percentage points compared with that of YOLACT, YOLO v8-x, Mask R-CNN and InstaBoost, respectively. Additionally, the average segmentation accuracy was 80.6%, which was 4.8, 1.5, 7.3, and 4.3 percentage points higher than that of the aforementioned models, respectively. The inference speed of this model was 25.6f/s. Overall, this model exhibited stronger robustness and real-time performance in terms of comprehensive performance, effectively addressing both accuracy and speed requirements. It can serve as a valuable reference for tomato picking robots in performing visual tasks.

    參考文獻
    相似文獻
    引證文獻
引用本文

倪紀鵬,朱立成,董力中,崔學(xué)智,韓振浩,趙博.基于SwinS-YOLACT的番茄采摘機器人實時實例分割算法研究[J].農(nóng)業(yè)機械學(xué)報,2024,55(10):18-30. NI Jipeng, ZHU Licheng, DONG Lizhong, CUI Xuezhi, HAN Zhenhao, ZHAO Bo. Real-time Instance Segmentation Algorithm for Tomato Picking Robot Based on SwinS-YOLACT[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(10):18-30.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-10
  • 出版日期:
文章二維碼