ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)生成對(duì)抗網(wǎng)絡(luò)的甜櫻桃數(shù)據(jù)增強(qiáng)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系果品產(chǎn)業(yè)創(chuàng)新團(tuán)隊(duì)項(xiàng)目(SDAIT-06-12)


Data Augmentation Method for Sweet Cherries Based on Improved Generative Adversarial Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決在數(shù)據(jù)不平衡條件下甜櫻桃分類模型出現(xiàn)的長(zhǎng)尾類不平衡問題,,提出了一種基于深度卷積生成對(duì)抗網(wǎng)絡(luò)(Deep convolutional generative adversarial networks,DCGAN)的缺陷甜櫻桃圖像增強(qiáng)方法,。首先,,在生成器部分引入多尺度殘差塊(MSRB)和CBAM注意力機(jī)制,增強(qiáng)了模型特征表達(dá)能力和生成圖像細(xì)節(jié)質(zhì)量,,同時(shí)改善了梯度流;在判別器部分應(yīng)用譜歸一化技術(shù),,并引入Wasserstein距離和加梯度懲罰的損失函數(shù),增強(qiáng)了模型訓(xùn)練穩(wěn)定性和收斂速度,。實(shí)驗(yàn)結(jié)果表明,,與傳統(tǒng)的GAN模型相比,,本文模型可以生成更高質(zhì)量的缺陷甜櫻桃圖像,兩種缺陷甜櫻桃圖像的FID值(Fréchet inception distance)分別為64.36和59.97,。本文模型生成的數(shù)據(jù)增強(qiáng)后,,VGG19和MobileNetV3的甜櫻桃分類準(zhǔn)確率分別提高16.44個(gè)百分點(diǎn)和13.94個(gè)百分點(diǎn)。

    Abstract:

    To address the class imbalance in sweet cherry data, a novel image enhancement method based on sweet cherry generative adversarial network, SCGAN was proposed. The generator incorporated multi-scale residual blocks (MSRB) and the convolutional block attention module (CBAM), enhancing the model’s feature representation and the quality of generated images. These blocks captured features at various scales, and CBAM focused on channel and spatial information, improving image quality. In the discriminator, spectral normalization and the Wasserstein distance with a gradient penalty loss function were applied. This combination controled the discriminator’s power, prevented overfitting, and boosted training stability and speed. Experimental results showed that SCGAN produced higher quality defective sweet cherry images compared with traditional GANs, with Fréchet inception distance (FID) scores of 64.36 and 59.97 for two types of defects. After data augmentation with SCGAN, classification accuracy for VGG19 and MobileNetV3 was increased by 16.44 percentage points and 13.94 percentage points, respectively. The data augmentation method presented held significant potential in addressing data imbalance issues within the agricultural and food sectors. It not only improved the generalization capability of models but also provided a more reliable data foundation for practical applications. Through this approach, it was possible to more effectively tackle long-tail class imbalance issues, which enhanced the accuracy and efficiency of agricultural and food detection systems.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

韓翔,李玉強(qiáng),高昂,馬靜怡,宮慶福,宋月鵬.基于改進(jìn)生成對(duì)抗網(wǎng)絡(luò)的甜櫻桃數(shù)據(jù)增強(qiáng)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(10):252-262. HAN Xiang, LI Yuqiang, GAO Ang, MA Jingyi, GONG Qingfu, SONG Yuepeng. Data Augmentation Method for Sweet Cherries Based on Improved Generative Adversarial Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(10):252-262.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-06-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-10
  • 出版日期:
文章二維碼