ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于MobileViT-PC-ASPP和遷移學習的果樹害蟲識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(32171799)和河北省重點研發(fā)計劃項目(22327404D)


Fruit Tree Pest Identification Method Based on MobileViT-PC-ASPP and Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高果樹害蟲識別效果,,及時做好防治措施,,本研究以6種對果樹危害程度較大的害蟲為研究對象,針對自然環(huán)境下果樹害蟲識別背景復雜、害蟲目標小檢測難度大,、與不同類別間特征相似度高等問題,,提出一種改進的輕量化MobileViT-PC-ASPP識別模型。該模型用PConv(Partial convolution)模塊代替原模型MobileViT模塊中部分標準卷積模塊,,其次修改MobileViT模塊的特征融合策略,,將輸入特征、局部表達特征,、全局表達特征進行拼接融合,;刪除網(wǎng)絡(luò)第10層MV2模塊和第11層MobileViT模塊,使用改進空洞空間池化金字塔(Atrous spatial pyramid pooling,,ASPP)模塊進行代替,,形成多尺度融合特征;此外,,模型用SiLU激活函數(shù)代替ReLU6激活函數(shù)進行計算,,最后基于ImageNet數(shù)據(jù)集進行遷移學習。實驗結(jié)果表明,,6類果樹害蟲圖像識別準確率達93.77%,,參數(shù)量為8.40×10.5,與改進前相比,,識別準確率提高7.5個百分點,,參數(shù)量降低33.86%;與常用害蟲CNN識別模型AlexNet,、ResNet50,、MobileNetV2、ShuffleNetV2相比識別準確率分別提高8.25,、4.78,、7.27、7.41個百分點,,參數(shù)量分別減少6.03×10.7,、2.48×107、2.66×106,、5.30×105,;與Transformer識別模型ViT、Swin Transfomer相比識別準確率分別提高19.03,、9.8個百分點,,參數(shù)量分別減少8.56×107,、2.75×107,。本研究適合部署在移動終端等有限資源環(huán)境,并且有助于實現(xiàn)對復雜背景下小目標果樹害蟲進行識別檢測。

    Abstract:

    In order to enhance the effectiveness of identifying pests in fruit trees and promptly implement preventive measures, focusing on six major pests that pose a significant threat to fruit trees, an improved lightweight MobileViT recognition model was proposed for the problems of complex background of fruit tree pest recognition in the natural environment, high difficulty of detecting the small target of the pests, and high feature similarity with the features between different categories. In enhancing the model, the partial convolution (PConv) module was employed to replace certain standard convolution modules in the original MobileViT module. Additionally, modifications were made to the feature fusion strategy within the MobileViT module, involving the concatenation fusion of input features, local expressive features, and global expressive features. The tenth layer MV2 module and the eleventh layer MobileViT module were removed, introducing an improved atrous spatial pyramid pooling (ASPP) module as a replacement, aiming to create multi-scale fusion features. Furthermore, the model adopted the SiLU activation function in lieu of the ReLU6 activation function for computations. Finally, the model underwent transfer learning based on the ImageNet dataset. The experimental results indicated that the recognition accuracy of six categories of fruit tree pest images reached 93.77%, with a parameter count of 8.40×105. In comparison with the previous version, the recognition accuracy was improved by 7.5 percentage points, while the parameter count was decreased by 33.86%. When compared with commonly used pest CNN recognition models, namely AlexNet, ResNet 50, MobileNetV2, and ShuffleNetV2, the proposed model achieved higher recognition accuracy by 8.25, 4.78, 7.27 and 7.41 percentage points, respectively, with parameter counts lowered by 6.03×107, 2.48×107, 2.66×106 and 5.30×105, respectively. Compared with Transformer recognition models such as ViT and Swin Transformer, the accuracy was higher by 19.03 and 9.8 percentage points, respectively, with parameter counts lowered by 8.56×107 and 2.75×107. The research was suitable for deployment in environments with limited resources, such as mobile terminals, which can contribute to the effective identification and detection of small target pests in fruit trees amidst complex backgrounds.

    參考文獻
    相似文獻
    引證文獻
引用本文

張歡,周毅,王克儉,王超,李會平.基于MobileViT-PC-ASPP和遷移學習的果樹害蟲識別方法[J].農(nóng)業(yè)機械學報,2024,55(11):57-67. ZHANG Huan, ZHOU Yi, WANG Kejian, WANG Chao, LI Huiping. Fruit Tree Pest Identification Method Based on MobileViT-PC-ASPP and Transfer Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):57-67.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼