ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高光譜成像和GAN-SA-UNet算法的煙葉葉脈分割方法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

中國煙草總公司重點(diǎn)研發(fā)項(xiàng)目(110202202010)


Tobacco Leaf Vein Segmentation Method Based on Hyperspectral Imaging and GAN-SA-UNet Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    葉脈作為植物的重要特征,,包含生理和遺傳信息,針對復(fù)雜葉面紋理狀態(tài)下的細(xì)小葉脈邊緣分割模糊,、分割精度低等問題,,以煙葉為研究對象,,提出了一種GAN-SA-UNet葉脈分割算法,。通過高光譜成像技術(shù)獲取葉脈與葉面光譜信息,并利用主成分分析(Principal component analysis,,PCA)對其進(jìn)行降維,,得到合成圖。在此基礎(chǔ)上,,引入空間注意力機(jī)制,,捕捉關(guān)鍵的空間特征,提高分割精度,,同時(shí)引入對抗網(wǎng)絡(luò),,優(yōu)化生成結(jié)果,提高葉脈分割的魯棒性,。結(jié)果表明:葉脈與葉面光譜PCA前3個(gè)主成分解釋率達(dá)到95.71%,,二者降維后的光譜特征表現(xiàn)出明顯的可分性,前3個(gè)主成分合成圖能夠凸顯葉面與葉脈之間的差異,,突出葉脈特征,。GAN-SA-UNet分割算法能夠捕捉復(fù)雜葉面紋理圖像的脈絡(luò)特征,分割準(zhǔn)確率和交并比分別達(dá)98.93%和66.23%,,與原模型相比,,分別提高0.18個(gè)百分點(diǎn)和4.21個(gè)百分點(diǎn),單幅圖像推理時(shí)間為4ms,。在對不同產(chǎn)地,、部位、等級,、類型煙葉驗(yàn)證測試中表現(xiàn)出較強(qiáng)的泛化能力和高效準(zhǔn)確的識別能力,。

    Abstract:

    As an important feature of plants, leaf veins contain physiological and genetic information. Aiming at the problems of blurred edge segmentation and low segmentation accuracy of small veins in complex leaf texture state, a GAN-SA-UNet vein segmentation algorithm was proposed with tobacco leaves as the research object. The spectral information of veins and leaves was obtained by hyperspectral imaging technology, and the principal component analysis ( PCA ) was used to reduce the dimension and obtain the composite map. On this basis, the spatial attention mechanismwas introduced to capture the key spatial features and improve the segmentation accuracy. At the same time, the adversarial network was introduced to optimize the generated results and improve the robustness of vein segmentation. The results showed that the interpretation rate of the first three principal components of PCA of leaf vein and leaf surface spectrum was 95.71%, and the spectral characteristics of the two after dimension reduction showed obvious separability. The first three principal components composite map could highlight the difference between leaf surface and leaf vein, and highlight the characteristics of leaf vein. The GAN-SA-UNet segmentation algorithm can capture the vein features in complex leaf texture images. The segmentation accuracy and intersection over union were 98.93% and 66.23%, respectively. Compared with the original model, they were increased by 0.18 percentage points and 4.21 percentage points, respectively. The inference time of single image was 4ms. It showed strong generalization ability and efficient and accurate recognition ability in the verification test of different producing areas, parts, grades and types of tobacco leaves.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

付主木,郝英杰,李嘉康,雷翔,堵勁松,徐大勇.基于高光譜成像和GAN-SA-UNet算法的煙葉葉脈分割方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(11):193-201. FU Zhumu, HAO Yingjie, LI Jiakang, LEI Xiang, DU Jinsong, XU Dayong. Tobacco Leaf Vein Segmentation Method Based on Hyperspectral Imaging and GAN-SA-UNet Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):193-201.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-02-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼