ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于MobileNetV2-CBAM的機(jī)收場景下冬小麥成熟期在線分類識(shí)別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2024TC183)和中國農(nóng)業(yè)大學(xué)橫向課題項(xiàng)目(202405410710092)


Online Classification and Identification Method of Winter Wheat Maturity under Mechanical Harvesting Scenario Based on MobileNetV2-CBAM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    小麥成熟期在線精準(zhǔn)分類識(shí)別將為實(shí)現(xiàn)聯(lián)合收獲機(jī)的智能化調(diào)控提供有效支撐,。本文提出一種基于車載相機(jī)和深度 學(xué)習(xí)結(jié)合的冬小麥成熟期在線分類方法。以車載相機(jī)拍攝的實(shí)時(shí)圖像為主,,無人機(jī)拍攝的圖像為輔,,構(gòu)建小麥乳熟-蠟熟初期、蠟熟后期-完熟初期,、完熟后期-枯熟期和已收割區(qū)數(shù)據(jù)集(4400 幅),。針對機(jī)收環(huán)境復(fù)雜、小麥圖像模糊等問題,,以 MobileNetV2 為基礎(chǔ)網(wǎng)絡(luò)結(jié)構(gòu),,在特征提取后添加卷積注意力模塊(Convolutional block attention module, CBAM )提升對 圖像特征的自適應(yīng)提取能力。為了評估模型可信度,,采用可視化技術(shù)觀察模型對圖像的關(guān)注區(qū)域,。以不同分類模型為對比,對建立的 MobileNetV2-CBAM 模型性能進(jìn)行評價(jià),。試驗(yàn)結(jié)果表明,,MobileNetV2-CBAM 模型在測試集中的分類識(shí)別準(zhǔn) 確率達(dá)到 99.5%,相比于MobileNetV2 高 0.7 個(gè)百分點(diǎn);與 ResNet 和 Swin Transformer 模型相比,,在分類精度未發(fā)生明顯差異的前提下,,MobileNetV2-CBAM 模型內(nèi)存占用量( 8.73 MB )僅為其1/8 和1/11。為了驗(yàn)證模型實(shí)際應(yīng)用效果,, 田間試驗(yàn)結(jié) 果表明,,在車速4~6 km/h 條件下,,每隔1 s識(shí)別1幅圖像,成熟期分類識(shí)別精度為 96.8%,,滿足機(jī)收場景下的小麥成熟期在 線分類準(zhǔn)確性和實(shí)時(shí)性要求,。

    Abstract:

    The precise online classification and identification of wheat maturity stages will offer valuable support for the intelligent control of combine harvesters. An online classification method was proposed for wheat maturity stages that combined vehicle-mounted cameras with deep learning techniques. By using real-time images captured by vehicle-mounted cameras, along with additional images from drones, a dataset of 4400 images was constructed, which included various wheat maturity stages, including milk ripening-early wax ripening stage, late wax ripening-early full ripening stage, late full ripening-dry ripening stage and harvested area. To address challenges such as complex harvesting environments and blurry wheat images, the MobileNetV2 was employed as the foundational network structure. Additionally, a convolutional block attention module(CBAM)was incorporated after feature extraction to enhance the adaptive capability of image feature extraction. To assess the credibility of the model, visualization techniques were employed to examine the areas of interest identified by the model in the images. The performance of the MobileNetV2 - CBAM model was compared with other classification models. Results indicated that the MobileNetV2 - CBAM model achieved a classification accuracy of 99.5% on the test set, which was 0.7 percentage points higher than that of MobileNetV2. When compared with ResNet and Swin Transformer models, the MobileNetV2 - CBAM model demonstrated similar classification accuracy but with a significantly smaller model memory usage(8.73 MB)—only 1/8 and1/11 of the memory usage of ResNet and Swin Transformer, respectively. Field experiments further validated the model’s practical application:at vehicle speeds of 4 km/h to 6 km/h, the system recognized an image every second with a maturity classification accuracy of 96.8%, meeting the accuracy and real-time requirements for online wheat maturity classification in mechanical harvesting scenarios.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王發(fā)明,倪昕東,張旗,陶偉,陳度,毛旭.基于MobileNetV2-CBAM的機(jī)收場景下冬小麥成熟期在線分類識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(s1):71-80,100. WANG Faming, NI Xindong, ZHANG Qi, TAO Wei, CHEN Du, MAO Xu. Online Classification and Identification Method of Winter Wheat Maturity under Mechanical Harvesting Scenario Based on MobileNetV2-CBAM[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):71-80,,100.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼