ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v8的蘋(píng)果樹(shù)樹(shù)干精準(zhǔn)識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022CXGC020706),、國(guó)家蘋(píng)果產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-27)、山東省青年科技人才托舉工程項(xiàng)目(SDAST2024QTA050)、山東省高等學(xué)?!扒鄤?chuàng)團(tuán)隊(duì)計(jì)劃”項(xiàng)目(2023KJ160)和鄉(xiāng)村振興科技創(chuàng)新提振行動(dòng)計(jì)劃項(xiàng)目(2023TZXD061)


Accurate Apple Tree Trunk Recognition Method Based on Improved YOLO v8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)蘋(píng)果樹(shù)樹(shù)干識(shí)別中存在檢測(cè)精度差與速度低的問(wèn)題,,提出一種基于改進(jìn) YOLO v8 的蘋(píng)果樹(shù)樹(shù)干精準(zhǔn)識(shí)別方法。首先,,采用深度感知相機(jī)采集蘋(píng)果樹(shù)樹(shù)干圖像,,并以YOLO v8 為基準(zhǔn)模型,采用結(jié)構(gòu)重參數(shù)化卷積替換卷積層,,增強(qiáng)模型特征學(xué)習(xí)能力,。其次,優(yōu)化特征融合單元,,增加動(dòng)態(tài)頭部檢測(cè)機(jī)制,,提升檢測(cè)速度與檢測(cè)精度。最后,,以傳統(tǒng) YOLO v8、Fast R-CNN等作為對(duì)照模型,,以平均精度和幀率等作為評(píng)價(jià)指標(biāo),,進(jìn)行田間試驗(yàn)。結(jié)果表明,,本文改進(jìn)模型具備精準(zhǔn)識(shí)別蘋(píng)果樹(shù)樹(shù)干的能力,,平均精度達(dá)到 95.07%,檢測(cè)速度提升至112.53 f/s,,模型參數(shù)量為4.512×107,。相比傳統(tǒng)YOLO v8 模型,平均精度提高了4.98個(gè)百分點(diǎn),,檢測(cè)速度提高了3.24 f/s,。與主流的目標(biāo)檢測(cè)模型 Fast R-CNN、YOLO v7,、YOLO v5,、YOLO v3 相比,改進(jìn)模型平均精度分別高出15.26,、6.33,、9.59、13.41 個(gè)百分點(diǎn);檢測(cè)速度分別高出96.81,、75.27,、2.23、57.10 f/s;參數(shù)量比Fast R-CNN,、YOLO v5,、YOLO v3分別減少9.198×107、1.93×106、1.641×107,。該研究為蘋(píng)果園中自主導(dǎo)航及智能 作業(yè)提供了技術(shù)與方法支持,。

    Abstract:

    To address the issues of low detection accuracy and speed in apple tree trunk recognition, this paper proposes a precise apple tree trunk recognition method based on an improved YOLO v8 model. First, a depth-sensing camera is used to capture images of apple tree trunks, and YOLO v8 is adopted as the baseline model. The convolutional layers are replaced with re-parameterized convolution structures to enhance the model′s feature learning capability. Second, the feature fusion unit is optimized by introducing a dynamic head detection mechanism, which improves both detection speed and accuracy. Finally, field experiments were conducted using traditional YOLO v8, Fast R-CNN, and other models as baselines, with average recognition accuracy and frame rate as evaluation metrics. The results show that the improved model is capable of accurately recognizing apple tree trunks, achieving an average recognition accuracy of 95.07% and a detection speed of 112.53 f/s, and the model parameters amount to 4.512×107. Compared with the traditional YOLO v8 model, the average recognition accuracy increased by4.98 percentage points, and detection speed increased by 3.24 f/s. Compared with mainstream object detection models such as Fast R-CNN, YOLO v7, YOLO v5, and YOLO v3, the improved model outperformed them in average recognition accuracy by 15.26, 6.33, 9.59, and 13.41 percentage points, respectively, and in detection speed by 96.81, 75.27, 2.23, and 57.10 f/s, respectively. Additionally, the model′s parameter count was reduced by 9.198× 107, 1.93×106, and 1.641×107 compared to Fast R-CNN, YOLO v5, and YOLO v3, respectively. This research provides technical and methodological support for autonomous navigation and intelligent operations in apple orchards.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張宏建,孫智霖,亓新春,曹鑫鵬,任松,王金星.基于改進(jìn)YOLO v8的蘋(píng)果樹(shù)樹(shù)干精準(zhǔn)識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(s1):246-255,262. ZHANG Hongjian, SUN Zhilin, QI Xinchun, CAO Xinpeng, REN Song, WANG Jinxing. Accurate Apple Tree Trunk Recognition Method Based on Improved YOLO v8[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):246-255,,262.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-25
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼