ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于特征點(diǎn)改進(jìn)的4PCS櫻桃樹三維點(diǎn)云配準(zhǔn)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省自然科學(xué)基金項(xiàng)目(ZR2020MC084)


Improved 4PCS Cherry Tree 3D Point Cloud Rgistration Method Based on Feature Points
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)點(diǎn)云配準(zhǔn)會(huì)消耗較多時(shí)間資源、配準(zhǔn)誤差較大等問題,,提出一種基于3D-SIFT 特征點(diǎn)改進(jìn)的4PCS配準(zhǔn)方法,。通過深度相機(jī)對(duì)櫻桃樹4個(gè)方位進(jìn)行掃描,獲取櫻桃樹三維點(diǎn)云數(shù)據(jù),。首先,,使用直通濾波和統(tǒng)計(jì)濾波,設(shè)計(jì)一個(gè)點(diǎn)云去噪框架,,篩選高質(zhì)量三維點(diǎn)云;其次,,應(yīng)用SIFT算法對(duì)櫻桃樹點(diǎn)云進(jìn)行特征提取,減少數(shù)據(jù)的維度,,增強(qiáng)特征穩(wěn)定性;再次,,將獲得的源特征點(diǎn)集和目標(biāo)特征點(diǎn)集,作為4PCS算法原始數(shù)據(jù)輸入進(jìn)行點(diǎn)云粗配準(zhǔn),,獲得精確位姿;最后,,利用ICP算法進(jìn)行精細(xì)配準(zhǔn),使其匹配狀態(tài)最佳,。以不同樹型櫻桃樹點(diǎn)云數(shù)據(jù)為實(shí)驗(yàn)對(duì)象,,引入消耗時(shí)間和均方根誤差,,作為配準(zhǔn)評(píng)估標(biāo)準(zhǔn)。實(shí)驗(yàn)結(jié)果表明,,在粗配準(zhǔn)階段,,本文配準(zhǔn)方法耗時(shí)分別為4.16、4.33 s,,均方根誤差分別為 0.953,、1.810 cm,有 效降低了配準(zhǔn)誤差,,縮短了配準(zhǔn)時(shí)間,。另外,在精配準(zhǔn)階段,,本文選用ICP算法,,并進(jìn)行多組精配準(zhǔn)實(shí)驗(yàn),結(jié)合本文方法整個(gè)配準(zhǔn)時(shí)間為4.84 s,,均方根誤差為 0.845 cm,,配準(zhǔn)時(shí)間和配準(zhǔn)誤差均達(dá)到最優(yōu)。

    Abstract:

    Aiming at solving the the problems of excessive time consumption and low registration efficiency caused by the4PCS algorithm when registrating the point cloud data, a improved4PCS coarse registration method based on the3D-SIFT feature point was proposed. The point cloud data of the cherry tree was collected from four directions by DK depth camera. Firstly, a point cloud denoising framework was designed by using traight-through filtering and statistical filtering to screen high-quality three-dimensional point cloud. Secondly, the SIFT algorithm was applied to extract features from cherry tree point cloud, which reduced data dimensions and enhanced feature stability. Thirdly, the obtained set of points about source feature and target feature were used as initial data of the 4PCS algorithm, and the coarse registration was carried out. Finally, after obtaining the precise pose, the ICP algorithm was used for precision registration until the best matching state was achieved. Taking cherry tree point cloud data of different types as the experimental objects to registration experiments, the time consuming and the root maen square error indexes were introduced to evaluate the experiments. In the coarse registration stage, the results showed that the registration time of the proposed registration method was 4.16 s and 4.33 s, respectively. The root mean square error was 0.953 cm and 1.810 cm, respectively, which effectively reduced the registration error and shortened the registration time. The results of multiple precision registration experiments demonstrated that both the overall point cloud registration time and registration error achieved optimal values based on the fusion of the proposed method and the ICP algorithm in the precision registration. The whole registration time was 4.84 s and the root mean square error was 0.845 cm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李云飛,李振東,楊立偉,劉剛,呂樹盛,宮艷晶.基于特征點(diǎn)改進(jìn)的4PCS櫻桃樹三維點(diǎn)云配準(zhǔn)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(s1):256-262. LI Yunfei, LI Zhendong, YANG Liwei, LIU Gang, Lü Shusheng, GONG Yanjing. Improved 4PCS Cherry Tree 3D Point Cloud Rgistration Method Based on Feature Points[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):256-262.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼