ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLO v8n改進的小麥病害檢測系統(tǒng)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(32371995)、山東省重點研發(fā)計劃(重大科技創(chuàng)新工程)項目(2022CXGC020708-1)和中國農(nóng)業(yè)大學(xué)研究生教改項目(JG202026,、QYJC202101,、JG202102、BH2022176)


Improved Wheat Disease Detection System Based on YOLO v8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對現(xiàn)有小麥病害檢測算法精度低,、處理速度緩慢,、易受背景環(huán)境干擾、難以檢測目標病害等問題,,結(jié)合先進的智 能手機硬件,、便捷的微信小程序以及高效的云服務(wù)平臺,設(shè)計一個基于云架構(gòu)的小麥病害檢測系統(tǒng),。系統(tǒng)主要包括云服務(wù)器模塊和微信小程序模塊,,云服務(wù)器端主要用于圖像接收和模型處理;使用 CSS 和 Java Script 語言開發(fā)微信小程序, 用于實現(xiàn)數(shù)據(jù)上傳,、信息反饋與信息顯示。為保證模型在云服務(wù)器部署的可行性,,提出一種基于YOLO v8n 改進的小麥病害檢測模型(C2f-Faster-Slim-Neck-YOLO v8n,,CS-YOLO)。該模型結(jié)合 FasterNet輕量化優(yōu)點,,使用 FasterNet 中的 FasterNet Block 替換 C2f 中 Bottleneck 模塊,,降低模型內(nèi)存占用量的同時,提高模型特征融合能力和檢測精度,。在頸部網(wǎng)絡(luò)使用 GSConv 并采用 Slim-Neck 設(shè)計范式中的 VoV-GSCSP 模塊對 YOLO v8n 的 Neck 進行改進,降低模型計算量的同時提高模型檢測精度,。試驗結(jié)果表明,,對于大田環(huán)境下所采集的小麥病害數(shù)據(jù)集,改進后模型浮點運算量及模型內(nèi)存占用量相比 YOLO v8n 基線模型分別降低24.4% 和17.5%,,同時平均精度均值相較于原模型提高1.2個百分點,,且優(yōu)于 YOLO v3-tiny、YOLO v5,、YOLO v6,、YOLO v7 和 YOLO v7-tiny 算法。最后將輕量化檢測模型 CS-YOLO 部署到云服務(wù)器上,,將檢測功能轉(zhuǎn)化為 API 接口,,小程序利用請求調(diào)用其接口調(diào)用服務(wù)器連接,服務(wù)器收到請求后,,將數(shù)據(jù)傳遞給部署在云服務(wù)器上的模型,,用戶通過使用微信小程序調(diào)用檢測模型對病害圖像進行類型識別和病害位置檢測,平均精度均值為 89.2%,,可為小麥病害識別類型和檢測病害位置提供技術(shù)支持,。

    Abstract:

    In order to solve the problems of low accuracy, slow processing speed, easy to be disturbed by the background environment and difficult to detect target diseases of the existing wheat disease detection algorithms, a wheat disease detection system based on cloud architecture was designed by combining advanced smart phone hardware, convenient WeChat mini program application and efficient cloud service platform. The system mainly included cloud server module and WeChat mini program module. The cloud server side was mainly used for image receiving and model processing. Using CSS and Java Script language to develop WeChat mini program for data upload, information feedback and information display. In order to ensure the feasibility of the model deployment in cloud server, an improved wheat disease detection model based on YOLO v8n(C2f- Faster-Slim-Neck-YOLO v8n, CS-YOLO)was proposed. Combining with FasterNet ’s advantages of lightweight, this model proposed to replace C2f Bottleneck module with FasterNet Block, which reduced the model size and improved the model ’s feature fusion ability and detection accuracy. In the Neck network, GSConv and VoV-GSCSP module in Slim-Neck design paradigm were used to improve the neck of YOLO v8n, reducing the calculation amount of the model and improving the detection accuracy of the model. The test results showed that for the wheat disease data set collected in the field environment, the floating point computation and model memory occupation of the improved model were reduced by 24.4% and 17.5% respectively compared with the baseline model of YOLO v8n, and the average accuracy was increased by 1.2 percentage points compared with the original model. It was superior to YOLO v3-tiny, YOLO v5, YOLO v6, YOLO v7, and YOLO v7-tiny algorithms. Finally, the lightweight detection model CS-YOLO was deployed on the cloud server and the detection function was transformed into an API interface. The applet called the server connection by requesting its interface. After receiving the request, the server passed the data to the model deployed on the cloud server. By using the WeChat mini program to invoke the detection model for disease image type recognition and disease location detection, the mean average precision was 89.2%, which can provide technical support for wheat disease type recognition and disease location detection.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉夢姝,張春琪,晁金陽,唐彬,張鵬磊,李民贊,孫紅.基于YOLO v8n改進的小麥病害檢測系統(tǒng)[J].農(nóng)業(yè)機械學(xué)報,2024,55(s1):280-287,355. LIU Mengshu, ZHANG Chunqi, CHAO Jinyang, TANG Bin, ZHANG Penglei, LI Minzan, SUN Hong. Improved Wheat Disease Detection System Based on YOLO v8n[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):280-287,,355.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼