ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

推掃式雙相機(jī)高光譜成像系統(tǒng)設(shè)計(jì)與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2002101)


Design and Test of Push-Broom Dual-camera Hyperspectral Imaging System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    高光譜成像( HSI )是一種應(yīng)用日益廣泛的無(wú)損檢測(cè)技術(shù),,HSI 數(shù)據(jù)同時(shí)包含樣品的空間與光譜信息,可用于表征物質(zhì)性質(zhì)的空間分布特征或快速獲取內(nèi)部異質(zhì)性較強(qiáng)樣品的性質(zhì)特征,。但受傳感器以及光學(xué)器件材料性能和成本制約,,單個(gè)高光譜相機(jī)僅能覆蓋有限的光譜波段范圍,但物質(zhì)性質(zhì)信息往往蘊(yùn)含在不同波段的光譜中,,導(dǎo)致使用單個(gè)相機(jī)監(jiān)測(cè)物質(zhì)性質(zhì)的種類和精度受限,。因此本文設(shè)計(jì)并搭建了一套推掃式雙相機(jī) HSI 系統(tǒng),該系統(tǒng)在波段400~1 000 nm 和1 000 2500 nm 的實(shí)際最小分辨率為140.31 μm 和222.72 μm,,光譜分辨率分別為2.8 nm 和12 nm,,共計(jì)有464個(gè)工作波段。使用 C#和 XAML 語(yǔ)言編寫(xiě)了用戶友好型數(shù)據(jù)采集軟件 MySpec HSI,,可實(shí)現(xiàn)雙相機(jī) HSI 數(shù)據(jù)的便捷采集,。為評(píng)估所搭建的推掃式 雙相機(jī) HSI 系統(tǒng)性能,,利用該系統(tǒng)對(duì)一組玉米樣品冠層進(jìn)行成像,建立了玉米冠層葉片生物量,、葉綠素含量和全氮含量的偏最小二乘回歸監(jiān)測(cè)模型,。基于可見(jiàn)近紅外單相機(jī)的生物量,、葉綠素含量和全氮含量監(jiān)測(cè)模型的R分別為 0.567,、0.773 和0.653,RMSEP 分別為0.52 g,、2.5 和 0.301%;基于短波紅外單相機(jī)的生物量,、葉綠素含量和全氮含量監(jiān)測(cè)模型的R分別為0.566、0.719 和 0.652,,RMSEP 分別為0.53 g,、2.8 和 0.309%,除葉綠素含量監(jiān)測(cè)的可見(jiàn)近紅外波段表現(xiàn)出略微優(yōu)勢(shì)外,,其他情況二者的監(jiān)測(cè)精度相當(dāng),,表明基于任一單相機(jī) HSI 均可實(shí)現(xiàn)玉米冠層葉片生物量、葉綠素含量和全氮含量監(jiān)測(cè),。而基于雙相機(jī)的生物量,、葉綠素含量和全氮含量監(jiān)測(cè)模型的R分別高達(dá) 0.670、0.822 和 0.683,,與單相機(jī)模型相比提升幅度最高分別為18%,、14% 和5%,RMSEP分別低至 0.46 g,、2.0 和 0.258%,,與單相機(jī)模型相比降低幅度最高分別為13%、27% 和17%,,表明融合雙相機(jī) HSI 數(shù)據(jù)能有效提高玉米冠層葉片性質(zhì)的監(jiān)測(cè)精度,。

    Abstract:

    Hyperspectral imaging ( HSI ) is an increasingly utilized non-destructive testing technology that simultaneously captures spatial and spectral information of samples, making it suitable for characterizing the spatial distribution of material properties or quickly obtaining the properties of highly heterogeneous samples. However, due to the limitations imposed by sensor and optical material performance and cost, a single hyperspectral camera can only cover a limited spectral range, while the material property information is often distributed across different spectral bands. This limits the types and accuracy of material property monitoring when using a single camera. A push-broom dual-camera HSI system was designed and constructed. The system achieved a minimum spatial resolution of 140.31 μm and 222.72 μm in the spectral ranges of 400~1 000 nm and 1 000~2500 nm, respectively, with spectral resolutions of 2.8 nm and 12 nm, covering a total of464 working bands. A user-friendly data acquisition software, MySpec HSI, was developed by using C# and XAML to facilitate convenient dual-camera HSI data collection. To evaluate the performance of the constructed push-broom dual-camera HSI system, it was used to image the canopy of maize samples, and partial least squares regression models were established for monitoring biomass, chlorophyll, and total nitrogen content in maize canopy leaves. The R values of the biomass, chlorophyll, and total nitrogen content monitoring models based on a visible-near-infrared(VNIR) single camera were 0.567, 0.773, and 0.653, respectively, with RMSEP values of 0.52 g, 2.5, and 0.301%. For the shortwave-infrared(SWIR )single camera, the R values were 0.566, 0.719, and 0.652, with RMSEP values of 0.53 g, 2.8, and 0.309%. Except for a slight advantage in chlorophyll monitoring by the VNIR band, the monitoring accuracy of the other properties was comparable between the two bands, indicating that either single-camera HSI can achieve biomass, chlorophyll, and nitrogen content monitoring of maize canopy leaves. However, the dual-camera model demonstrated superior performance, with R values for biomass, chlorophyll, and total nitrogen content reaching 0.670, 0.822, and 0.683, respectively, representing improvements of up to 18%, 14%, and 5% compared with that of the single-camera models. The RMSEP values were decreased to 0.46 g, 2.0, and 0.258%, respectively, showing reductions of up to 13%, 27%, and 17% compared with that of the single-camera models, indicating that integrating dual-camera HSI data effectively enhanced the accuracy of monitoring maize canopy leaf properties.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

史卓林,楊增玲,任朝霞,于淶源,王凌龍,黃圓萍,韓魯佳.推掃式雙相機(jī)高光譜成像系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(s1):288-294,305. SHI Zhuolin, YANG Zengling, REN Zhaoxia, YU Laiyuan, WANG Linglong, HUANG Yuanping, HAN Lujia. Design and Test of Push-Broom Dual-camera Hyperspectral Imaging System[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):288-294,,305.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼