ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)的刺萼龍葵實時識別與計數(shù)方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

河北省高層次人才項目(C20231104)


Application of Deep Learning for Real-time Detection, Localization and Counting of Solanum rostratum Dunal
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    刺萼龍葵(Solanum rostratum Dunal,,SrD )作為一種全球性有害入侵雜草,,已在多個國家廣泛分布,,對當(dāng)?shù)氐霓r(nóng)業(yè) 和生態(tài)系統(tǒng)安全造成了嚴(yán)重威脅,。設(shè)計了一種深度學(xué)習(xí)網(wǎng)絡(luò)模型(TrackSolanum)進(jìn)行刺萼龍葵的現(xiàn)場實時檢測、定位和計數(shù),。TrackSolanum 網(wǎng)絡(luò)模型由檢測模塊,、跟蹤模塊和定位計數(shù)模塊3部分構(gòu)成,檢測模塊采用 YOLO_EMA 檢測刺萼龍葵,,跟蹤模塊利用 DeepSort 對連續(xù)視頻幀中刺萼龍葵進(jìn)行多目標(biāo)追蹤,,定位計數(shù)模塊通過質(zhì)心定位和目標(biāo) ID 過線失效實現(xiàn)刺萼龍葵的定位和計數(shù)。YOLO_EMA 模型在測試集上的精確率(Precision,,P),、召回率(Recall,,R)、 平均精度(Average precision,,AP)和幀率(Frame per second,,F(xiàn)PS)分別達(dá)到 93.7%、93.6%,、97.8% 和 91 f/s,,證明了其在刺萼龍葵現(xiàn)場實時檢測 任務(wù)中的有效性。為進(jìn)一步驗證 YOLO_EMA 網(wǎng)絡(luò)的檢測性能,,對原始 YOLO v8,、YOLO_EMA 以及本團(tuán)隊前期設(shè)計的 YOLO_CBAM進(jìn)行了消融試驗。此外,,討論了刺萼龍葵不同生長階段對檢測效果的影響,,在刺萼龍葵幼苗期,TrackSolanum模型的精確率,、召回率,、平均精度和幀率分別為95.9%,96.4%,,98.6%和74f/s,。在刺萼龍葵生長期,TrackSolanum模型的精確率,、召回率,、平均精度和幀率分別為96.3%,95.4%,,97.0%和71f/s,,均表現(xiàn)出良好的檢測結(jié)果。現(xiàn)場試驗結(jié)果表明,,針對無人機(jī)飛行在2 m 高度獲取的視頻,,TrackSolanum 模型的精確率和召回率分別達(dá)到 94.2% 和 96.5%,多目標(biāo)跟蹤準(zhǔn)確率(Multiple object tracking accuracy,,MOTA )和 IDF1 分別達(dá)到 80.6% 和 95.4%,,計數(shù)失誤率僅為 3.215%。TrackSolanum 模型可以用于刺萼龍葵的現(xiàn)場實時檢測,,并能夠為刺萼龍葵入侵的危害評估和精準(zhǔn)治理提供技術(shù)支持,。

    Abstract:

    Solanum rostratum Dunal( SrD )is a globally harmful invasive weed, that has spread widely in many countries, and poses a serious threat to local agriculture and ecosystem security. A deep learning network model, TrackSolunam, was designed to realize real-time detection, localization, and counting for SrD. The TrackSolanum network model consisted of three parts :a detection module, a tracking module, and a localization and counting module. The main body of the detection module consisted of YOLO v8 with the added EMA attention mechanism, which can detect SrD plants in real time. The main body of the tracking module was based on DeepSort, which enabled multi-object tracking based on the output of the detection module. It can identify the same SrD plant in consecutive video frames, avoiding repeated identification and counting. The localization module located the plants of SrD that were detected by searching for their centroids and can output the specific coordinates of the centroids in each frame, facilitating subsequent removal processes. The counting module avoided the issue of repeated counts by specific processing that the target ID was invalid after it crossed the detection line. The YOLO_EMA model achieved precision, recall, AP and FPS of 93.7%, 93.6%, 97.8% and 91 f/s, respectively, demonstrating its effectiveness in real-time detection tasks for SrD in the field. To further validate the detection performance of the YOLO_EMA network, an ablation study comparing the original YOLO v8, YOLO_EMA and the previously designed YOLO_CBAM was conducted. Additionally, the impact of different growth stages of SrD on detection performance was discussed. During the seedling stage, the TrackSolanum model achieved precision, recall, AP, and FPS of 95.9%, 96.4%, 98.6% and 74 f/s, respectively. In the growth stage, the TrackSolanum model′s precision, recall, AP, and FPS were 96.3%, 95.4%, 97.0% and 71 f/s, respectively, all demonstrating good detection results. The field test results showed that for the video acquired by UAV flight at 2 m height, the precision and recall of the TrackSolanum model reached 94.2% and 96.5%, respectively, and the MOTA and IDF1 reached 80.6%and 95.4%, respectively, with the counting error rate of only 3.215%. The TrackSolanum model can be used for real-time detection of SrD in the field, providing crucial technical support for hazard assessment and precise management of SrD invasion.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜世峰,楊亞帥,程曼,袁洪波.基于深度學(xué)習(xí)的刺萼龍葵實時識別與計數(shù)方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(s1):295-305. DU Shifeng, YANG Yashuai, CHENG Man, YUAN Hongbo. Application of Deep Learning for Real-time Detection, Localization and Counting of Solanum rostratum Dunal[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):295-305.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼