ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于ORB-SLAM2的溫室移動(dòng)機(jī)器人定位研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1600300-4/06,、2020YFD1000300)


Greenhouse Mobile Robot Localization Based on ORB-SLAM2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)溫室內(nèi)道路環(huán)境復(fù)雜,,且溫室移動(dòng)機(jī)器人無(wú)法使用 GNSS 進(jìn)行定位的問題,本文開展了基于 ORB-SLAM2 的溫室定位研究,。首先,,對(duì) Realsense D455 型深度相機(jī)獲取的溫室彩色圖像和深度信息進(jìn)行預(yù)處理,通過(guò)圖像金字塔和灰度質(zhì)心法實(shí)現(xiàn) ORB 特征的尺度和旋轉(zhuǎn)不變性,,完成精確有效的特征點(diǎn)匹配;其次,,利用跟蹤線程參考關(guān)鍵幀跟蹤、勻速模型跟蹤和重定位跟蹤進(jìn)行粗定位,,再使用局部地圖跟蹤進(jìn)行精定位,,實(shí)現(xiàn)對(duì)相機(jī)位姿的精確求解;再次,結(jié)合局部建圖線程,,在完成關(guān)鍵幀插入,、近期地圖點(diǎn)篩選,、新地圖點(diǎn)篩選、新地圖點(diǎn)重建,、局部 BA 優(yōu)化和局部關(guān)鍵幀篩選的基礎(chǔ)上,,應(yīng)用共視圖方法建立地圖點(diǎn);最后,結(jié)合閉環(huán)線程,,通過(guò)候選回環(huán),、計(jì)算相似變換、回環(huán)融合和位姿圖優(yōu)化對(duì)全圖地圖進(jìn)行回環(huán)修正,,從而實(shí)現(xiàn)溫室內(nèi)的實(shí)時(shí)定位與建圖,。選取辣椒生長(zhǎng)初期、中期和成熟期3 種不同作物生長(zhǎng)期的溫室進(jìn)行實(shí)機(jī)測(cè)試,,算法生成的軌跡與實(shí)際軌跡基本契合,,X軸的均方根誤差分別為 0.6862、0.355 0,、0.4925 m,,平均絕對(duì)誤差分別為 0.5883、 0.293 7,、0.4554 m,,Z 軸的均方根誤差分別為0.149 7、0.071 8,、0.3686 m,,平均絕對(duì)誤差分別為0.0986、0.0464,、0.2825 m,。試驗(yàn)結(jié)果表明該方法可為溫室移動(dòng)機(jī)器人的定位與導(dǎo)航提供技術(shù)支撐。

    Abstract:

    Aiming at the complex road environment in greenhouse and the problem that greenhouse mobile robots cannot use GNSS for localization, research and experiments on greenhouse localization were carried out based on ORB-SLAM2. Firstly, the color image and depth information of greenhouse acquired by the depth camera Realsense D455 were preprocessed, and the scale and rotation invariance of ORB features was achieved by the image pyramid and grayscale center-of-mass method to complete accurate and effective feature point matching. Secondly, coarse localization was done by using tracking thread reference key frame tracking, homogeneous model tracking, and repositioning tracking, and then fine localization was done by using local map tracking to achieve an accurate solution for the camera pose. Thirdly, combining with the local map building thread, applying the common-view method to build up the map points based on the completion of the key frame insertion, the recent map point screening, the new map point screening, the new map point reconstruction, the local BA optimization, and the local key frame screening. Finally, combined with the closed-loop thread, the full map was corrected by loopback correction through the candidate loopback, computation of similarity transformation, loopback fusion, and position map optimization, so as to realize the greenhouse in the real-time localization and map building. Three greenhouses with different crop growth conditions in the early, middle and maturity stages of pepper growth were selected for real-machine testing, and the trajectories generated by the algorithm basically matched the actual trajectories, with the root-mean-square errors on the X-axis of 0.6862 m, 0.355 0 m, 0.4925 m, and the average absolute errors of 0.5883 m, 0.293 7 m, and 0.4554 m, respectively, and on the Z-axis of 0.149 7 m, 0.071 8 m, 0.3686 m, and the average absolute errors of 0.0986 m, 0.0464 m, and 0.2825 m, respectively. The experimental results showed that the method could provide technical support for the localization and navigation of greenhouse mobile robots.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李旭,陽(yáng)奧凱,劉青,伍碩祥,劉大為,鄔備,謝方平.基于ORB-SLAM2的溫室移動(dòng)機(jī)器人定位研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(s1):317-324,,345. LI Xu, YANG Aokai, LIU Qing, WU Shuoxiang, LIU Dawei, WU Bei, XIE Fangping. Greenhouse Mobile Robot Localization Based on ORB-SLAM2[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):317-324,,345.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼