ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于距離校正和數(shù)據(jù)融合的蘋果可溶性固形物含量預(yù)測模型優(yōu)化
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2021YFD1600101-06)和中國農(nóng)業(yè)大學(xué)2115人才工程項目


Optimization of Apple Soluble Solids Content Prediction Models Based on Distance Correction and Data Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    采用可見/近紅外漫反射光譜技術(shù)對蘋果可溶性固形物含量(Soluble solids content, SSC)檢測時,,光譜采集探頭到蘋果 表面的距離變化是隨機(jī)和不可控的,,造成檢測精度降低,。并且采用特征波長篩選算法優(yōu)化預(yù)測模型時,,忽略了被舍棄光譜數(shù)據(jù)中所包含的與成分含量相關(guān)信息,,造成光譜信息丟失,。針對以上問題,通過探究檢測距離對漫反射光譜的影響規(guī)律,,提出一種距離校正方法(Distance correction, DC),,并采用數(shù)據(jù)融合方法將特征波長和非特征波長數(shù)據(jù)中的有效信息相結(jié)合,以提高蘋果 SSC預(yù)測模型的預(yù)測性能,。為了驗證所提出方法的有效性,,分別采用多元散射校正(Multiple scattering correction, MSC),、標(biāo)準(zhǔn)正態(tài)變換(Standard normal variate transform, SNV)和 DC 算法對蘋果光譜預(yù)處理后,建立蘋果 SSC 的偏最小二乘回 歸(Partial least squares regression, PLSR)模型,。結(jié)果表明,,DC能更加有效提升 PLSR 模型的預(yù)測性能。為了減少模型數(shù)據(jù)量,、消除光譜中共線性和無效信息,,在DC預(yù)處理光譜的基礎(chǔ)上,采用競爭性自適應(yīng)加權(quán)采樣算法(Competitive adaptive reweighted sampling, CARS),、自舉軟收縮(Bootstrapping soft shrinkage, BOSS)和區(qū)間變量迭代空間收縮法(Interval variable iterative space shrinkage approach, iVISSA)對光譜數(shù)據(jù)進(jìn)行特征波長篩選,。建模結(jié)果表明,DC-CARS-PLSR模型具有較好預(yù)測結(jié)果,,并且大幅減少了光譜數(shù)據(jù)量,。為了充分利用特征波長和非特征波長數(shù)據(jù)中與蘋果SSC相關(guān)的信息,將特征和非特征波長PLSR模型的潛變量得分相融合,,建立融合PLSR預(yù)測模型,。結(jié)果表明,所提出的數(shù)據(jù)融合方法能夠進(jìn)一步提高模型預(yù)測性能,。其中CARS算法的特征波長和非特征波長數(shù)據(jù)融合建模結(jié)果具有最佳預(yù)測性能,,校正集相關(guān)系數(shù)Rc、校正集均方根誤差(Root mean square error of calibration, RMSEC),、預(yù)測集相關(guān)系數(shù)Rp,、預(yù)測集均方根誤差(Root mean square error of prediction, RMSEP)和相對分析誤差(Relative percentage difference, RPD)分別為0.981、0.297%,、0.957,、0.469% 和3.424,。

    Abstract:

    When using visible/near-infrared diffuse reflectance spectroscopy for the detection of soluble solids content(SSC)in apples, the distance from the spectral acquisition probe to the sample surface varies randomly and uncontrollably, resulting in a reduction of detection accuracy. Moreover, when using characteristic wavelengths to establish the prediction models, the contribution of non- characteristic wavelengths to the prediction results is often neglected, resulting in the loss of spectral information. Therefore, a distance correction(DC)method was proposed by exploring the law of the influence of detection distance on diffuse reflectance spectra and establishing prediction models for apple SSC by combining the modeling method of fusion of characteristic wavelength and non-characteristic wavelength data. The results showed that DC could more effectively improve the prediction performance of the PLSR model;the use of the competitive adaptive reweighted sampling (CARS ) algorithm for characteristic wavelength screening based on DC preprocessing could effectively simplify the model and improve the model prediction performance; and the fusion modeling results of characteristic and non-characteristic wavelength data of the CARS algorithm had the best prediction performance, with the correlation coefficient of calibration( Rc), root mean square error of calibration(RMSEC), the correlation coefficient of prediction(Rp), root mean square error of prediction(RMSEP)and relative percentage difference(RPD )of 0.981, 0.297%, 0.957, 0.469% and 3.424, respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李陽,彭彥昆,李永玉.基于距離校正和數(shù)據(jù)融合的蘋果可溶性固形物含量預(yù)測模型優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(s1):336-345. LI Yang, PENG Yankun, LI Yongyu. Optimization of Apple Soluble Solids Content Prediction Models Based on Distance Correction and Data Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):336-345.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-08-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼